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Abstract In this paper we revisit the parabolic approximation for wave propagation in ran-
dom media by taking into account backscattering. We obtain a system of transport equations
for the moments of the components of reflection and transmission operators. In the regime in
which forward scattering is strong and backward scattering is weak, we obtain closed form
expressions for physically relevant quantities related to the reflected wave, such as the beam
width, the spectral width and the mean spatial power profile. In particular, we analyze the
enhanced backscattering phenomenon, that is, we show that the mean power reflected from
an incident quasi-plane wave has a maximum in the backscattered direction. This enhance-
ment can be observed in a small cone around the backscattered direction and we compute
the enhancement factor as well as the shape of the enhanced backscattering cone.

Keywords Waves · Random media · Asymptotic analysis · Enhanced backscattering

1 Introduction

Wave propagation in random media has received a lot of attention in recent decades due
to a wide range of important applications, for instance, in communication, remote sensing,
and imaging. A special regime is encountered in many of these situations, such as for laser
propagation in the atmosphere, in which the wave has the form of a beam that propagates
along a propagation axis. This situation arises if the propagation distance L and the incoming
beam, characterized by a typical wavelength λ and a beam width R, satisfy the parabolic
approximation, namely L � R � λ and R2 ∼ Lλ. In this regime and in a homogeneous
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medium, the paraxial wave equation describes how the wave propagates and spreads out by
diffraction.

In this paper we model the medium as being randomly heterogeneous. The paraxial wave
equation in random media has been studied extensively [22, 23]. The random fluctuations
of the medium can be characterized by two length scales: the longitudinal correlation radius
Lz (i.e. the correlation length in the propagation direction) and the transverse correlation
radius Lx . Different regimes have been presented and analyzed in the literature, all of them
are characterized by the fact that the forward-scattering approximation is used, in the sense
that backscattering is neglected and the deformation of the transmitted wave field is then
analyzed [5, 6, 17, 18, 21]. However, it would be useful to be able to study the backscattered
wave, since it may be the only information available in many remote sensing or imaging
configurations. In this paper, we address the regime Lx ∼ R and Lz ∼ λ in which conver-
sion from forward-going to backward-going waves is not negligible. In this regime, using
diffusion approximation theory, we obtain a system of transport equations for the moments
of the components of the reflection and transmission operators. This system captures the
full conversion mechanisms between forward- and backward-going waves. The full system
is complicated, however, there is a regime in which the analysis can be carried out in detail.
This regime derives from the fact that the conversion rate between two wave components
is proportional to the power spectral density of the medium fluctuations evaluated at the
difference of the two wavevectors of these wave components. Consequently, if we assume
that λ is slightly smaller than Lz, then the conversion rate between backward-going and
forward-going waves is smaller than the conversion rate between two forward-going waves
with nearby wavevectors. In this regime, in which forward scattering can be strong, but
backscattering is weak, it is possible to obtain a tractable system of transport equations and
to study analytically various physically relevant quantities, such as the beam width, the spec-
tral width, or the spatial power profile of the reflected wave. In addition, it is also possible
to identify the enhanced backscattering phenomenon: if a monochromatic quasi-plane wave
is incoming with a given incidence angle, then the mean reflected power has a local max-
imum in the backscattered direction. This enhancement can in fact be observed in a small
cone around the backscattered direction. This phenomenon, also called weak localization, is
well-known in physics and it has been observed in several experimental contexts, in optics
with powder suspensions [25, 28], with biological tissues [29], with ultra-cold atoms [15]
and in acoustics [24]. It can be explained by diagrammatic expansions [2, 26], where the
reciprocity principle and interference effects between direct and reverse wave paths play a
crucial role. Here we give a mathematical derivation of this phenomenon by an asymptotic
analysis in the weak backscattering regime. Namely, we compute the enhancement factor,
which is equal to 2 if forward scattering is strong enough, and we describe the shape of the
enhanced backscattering cone.

2 Waves in a Random Medium

We consider linear acoustic waves propagating in 1 + d spatial dimensions with heteroge-
neous and random medium fluctuations. The governing equations are

ρε(z,x)
∂uε

∂t
+ ∇pε = Fε(t, z,x),

1

Kε(z,x)

∂pε

∂t
+ ∇ · uε = 0, (1)

where pε is the pressure, uε is the velocity, ρε is the density of the medium, Kε is the
bulk modulus of the medium, and (z,x) ∈ R × R

d are the space coordinates. The source is
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modeled by the forcing term Fε . Here we shall focus on propagation through and reflection
from a random slab occupying the interval z ∈ (0,L) with the source Fε located outside
of the slab, in the half-space z > L. The parameterization is motivated by waves probing
for instance the heterogeneous earth and we may think of z as the main probing direction.
We shall refer to waves propagating in a direction with a positive z component as right-
propagating waves.

2.1 Scaling

We consider a scaling where the random medium fluctuations vary relatively rapidly in space
while the “background” medium is constant. We normalize the background bulk modulus
and density to one and we consider the following model for the bulk modulus fluctuations

1

Kε(z,x)
=

{
1 + εrν(z/ε2,x/εp+�p) if z ∈ (0,L),

1 otherwise,

where r , p and �p are nonnegative constants that we discuss below and ε is a small parame-
ter. The dimensionless density is assumed to be constant (and equal to one) for simplicity.
The random field ν(z,x) models the spatial fluctuations of the medium and we assume that
it is a zero-mean, stationary, and 1 + d-dimensional random process and that it satisfies
strong mixing conditions in the z-direction. We remark that the medium is specified as be-
ing matched at the boundaries of the random slab so that the wave speed in the complement
of the slab z < 0 and z > L coincides with the background wave speed in the slab z ∈ (0,L)

[8]. We consider a scaling where the central wavelength of the source is of order εq and
write

Fε(t, z,x) = f

(
t

εq
,

x
εp

)
δ(z − z0)ez, (2)

with q a positive parameter, z0 > L, and ez the unit vector pointing in the z-direction. Our
objective is to characterize both the transmitted and reflected wave fields. The transmitted
wave field is the field observed at the end of the slab (at z = 0) while the reflected wave field
is the wave field reflected back from the random slab (at z = L). Our first task is to identify
equations that give a convenient description of coupling between different wave modes. The
complex amplitudes ǎε and b̌ε of the generalized right-propagating and left-propagating
modes are defined by

ǎε(k, z,x) =
(

1

2εq

∫
pε(t, z,x)eikt/εq

dt + 1

2ik

∫
∂pε

∂z
(t, z,x)eikt/εq

dt

)
e−ikz/εq

,

b̌ε(k, z,x) =
(

1

2εq

∫
pε(t, z,x)eikt/εq

dt − 1

2ik

∫
∂pε

∂z
(t, z,x)eikt/εq

dt

)
eikz/εq

.

(3)

They are such that the pressure field has the form:

pε(t, z,x) = 1

2π

∫
(ǎε(k, z,x)eikz/εq + b̌ε(k, z,x)e−ikz/εq

)e−ikt/εq

dk, (4)

and they also satisfy the condition that serves to correctly decompose the wave

∂ǎε

∂z
eikz/εq + ∂b̌ε

∂z
e−ikz/εq = 0.
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In the homogeneous medium with ν = 0 the ansatz (3) gives a decomposition into uncoupled
right- and left-propagating modes. In the case in which the medium is layered with ν = ν(z)

the ansatz gives a decomposition into right- and left-propagating modes that couple via
a zero-mean stochastic coupling matrix [1, 8]. In the layered case the problem moreover
decomposes into mode problems corresponding to a particular lateral slowness, that is, a
particular lateral velocity component. We shall see that in the general case with ν = ν(z,x)

we have a coupling of modes via a zero-mean coupling “matrix”, however, in this case this
coupling involves in general modes of all lateral directions so that the coupling matrix now
becomes a coupling operator.

We next rescale as x/εp → x and obtain the following coupled mode equations:

dǎε

dz
= (L1 +L2)

(
z

ε2
,

x
ε�p

)
ǎε + e

−2ikz
εq (L1 +L2)

(
z

ε2
,

x
ε�p

)
b̌ε, (5)

db̌ε

dz
= −e

2ikz
εq (L1 +L2)

(
z

ε2
,

x
ε�p

)
ǎε − (L1 +L2)

(
z

ε2
,

x
ε�p

)
b̌ε, (6)

for

L1

(
z

ε2
,

x
ε�p

)
= iεr−qk

2
ν

(
z

ε2
,

x
ε�p

)
, L2

(
z

ε2
,

x
ε�p

)
= iεq−2p

2k
�⊥,

with �⊥ the transverse Laplacian. Before we proceed with the analysis of (5–6) we re-
mark that in the white-noise scaling: r − q = −1, q = 2p > 2 and �p = 0, the fast phases
exp(±2ikz/εq) cancel out the coupling terms between ǎε and b̌ε in (5–6) and we obtain the
forward or one-way wave approximation corresponding to:

dǎε

dz
= (L1 +L2)

(
z

ε2
,x

)
ǎε,

which can be written

dǎε

dz
= i

2k
�⊥ǎε + ik

2ε
ν

(
z

ε2
,x

)
ǎε. (7)

This is the celebrated Schrödinger or paraxial wave equation. We next make some remarks
regarding the scaling that we have set forth.

(1) The relative lateral scale of the fluctuations is determined by the parameter �p. If
�p < 0 the medium is to leading order layered leading to a situation of the type analyzed
in [8]. Here, we extend this analysis by considering the base case situation with �p = 0,
the situation in which the lateral variation is on the scale of the lateral paraxial spreading
scale leading to a delicate interaction between the wave modes. We remark that we will also
discuss cases with �p 	= 0 below. The parameter �p characterizes the lateral diversity in the
problem and we shall differentiate between the situations: (i) no lateral diversity or layered
medium, �p = −∞, (ii) moderate lateral diversity, −∞ < �p < 0, a perturbation of the
layered situation, (iii) critical lateral diversity which will be our focus, �p = 0, (iv) large
lateral diversity, �p > 0, this last regime leads to statistical stability for some important
functionals of the wave field and in the context of the Schrödinger equation it was discussed
in [17, 18].

(2) Note that only when we observe the wave field in the parabolic scaling regime corre-
sponding to the lateral scale

p = q

2
, (8)
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do we observe non-degenerate lateral coupling in the transmitted wave field. This corre-
sponds to the lateral spreading scale εq/2 of the Schrödinger Green function at a depth
of order one and a wavelength of order εq . Note that on lateral scales corresponding to
p < q/2 we observe only the wave front behavior and the problem becomes essentially one-
dimensional or layered [8]. Lateral scales corresponding to p > q/2 are relatively coarse so
that the lateral wave field structure cannot be resolved. We will thus here use the parabolic
scaling (8).

(3) We shall also use the white-noise scaling r − q = −1, corresponding to a potential
which in the limit ε → 0 becomes a Brownian random field in distribution. In this scaling
the wave field can be given a weak or distributional characterization. If r − q < −1 then the
random medium fluctuations become very strong so that the wave field structure cannot be
given a generic description. If r − q > −1 then the random medium fluctuations are weak
and the wave field is not affected by them to leading order.

(4) In the parabolic scaling regime we comment on two particular situations.
First, consider the case

q = 2p = 2. (9)

It corresponds to the situation in which the wavelength is on the scale of the random medium
fluctuations in the propagation direction. The white-noise scaling then gives r = 1, corre-
sponding to a weakly heterogeneous scaling.

Second, if q = 2p = 1 then the wavelength is large compared to the scale of the ran-
dom fluctuations. The white-noise scaling then gives r = 0 leading to what we refer to as a
strongly heterogeneous scaling.

We remark that if q = 2p < 1 then, even with random fluctuations of order one, we are
led to the effective medium approximation for the slab. While if q = 2p > 2 then the wave-
length is small compared to the scale of the random fluctuations leading to a geometrical
optics scaling where the wave field interacts strongly with the particular features of medium
fluctuations and we shall not pursue this scaling here [20, 27]. In this paper we shall focus
on the weakly heterogeneous scaling.

(5) Finally, we remark that p + �p = 2 and r = 1 is another particular scaling that can
be analyzed, it corresponds to a radiative transfer scaling [19]. In this situation the wave
field is not coherent, but the mean incoherent wave intensity can be given a generic descrip-
tion. Here we are interested in scaling regimes that give partially coherent transmission, the
situation in which the mean field and wave fluctuations coexist.

In conclusion we shall focus the analysis on the weakly heterogeneous parabolic scaling
regime with critical lateral fluctuation length characterized by

q = 2p = 2, r = 1, �p = 0. (10)

Note that we have made a particular choice of propagation direction z versus lateral direc-
tions x. It corresponds in our scaling to a situation with a wave front or beam propagation
with the z axis being the propagation direction of the front in the original coordinates in (1)
(see Fig. 1).

The forward-scattering approximation (7) has played an important role in many applica-
tions of wave propagation. However, in a situation with relatively strong medium fluctua-
tions there is a strong longitudinal coupling of modes that is not captured by this approxi-
mation. We show next a numerical simulation that illustrates this fact. Consider a random
medium half-space with an embedded extended scatterer. The solid line in Fig. 2 is the
spectrum of the absolute value of the reflected harmonic wave field computed via a finite
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Fig. 1 This figure illustrates the
scaling regime discussed in this
paper: The typical wavelength is
of order ε2, this is also the case
for the longitudinal correlation
length. The beam radius is of
order ε, this is also the case for
the transverse correlation radius.
Finally, the propagation distance
is of order 1

Fig. 2 The figure shows on a log scale: P(kz) = |∑Nz
j=1 | ∫ ∞

−∞ p(t,0, zj )eiω0t dt |e2πijkz |, where zj are
the discretization points in the depth direction and Nz = 1400, moreover, the wavelength 2πc0/ω0 is 6π�z.
The random medium fluctuations are smooth with a Gaussian spectrum, a correlation length of 10�z and a
contrast in the index of refraction of 5%. The solid line in the two plots corresponds to a discretization of the
Helmholtz equation. In the left plot the dashed line derives from a discretization via the uncoupled parabolic
approximation and gives an artificially smooth solution, while in the right plot the dashed line corresponds
to a discretization via the coupled parabolic approximation system and resolves much better the features of
the Helmholtz solution that comes from longitudinal scattering

difference discretization of the Helmholtz equation over a finite domain with non-reflecting
boundary conditions approximated by Perfectly Matched Layers. Note that this discretiza-
tion gives coupling of all unknowns rather than a simple time marching scheme as in the
forward-scattering approximation. The dashed line in the left plot is the spectrum that results
from using only the uncoupled forward or parabolic approximation. We see that longitudinal
scattering is not captured well leading to poor approximation of the wave heterogeneity and
an artificially smooth approximation. In the right plot the dashed line corresponds to an ap-
proximation of the system (5–6) that captures the important “right” and “left” coupling [12,
13]. The latter approximation corresponds to iterative right and left sweeps implementation
of (5–6) when the coupling correction associated with exp(±2ikz/εq)L2 is neglected, giv-
ing convergence after a few iterations. The boundary condition at the depth of the embedded
scatterer is implemented via a domain decomposition approach with the inclusion located
in a small domain numerically resolved via a discretization of the Helmholtz equation (see
[12] for details). Motivated by this computational example we derive in the next sections
an analytic framework that can be used to understand the longitudinal coupling that is not
captured by the forward approximation.
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2.2 The Boundary Conditions

The mode amplitudes ǎε and b̌ε satisfy the system (5–6) in the random slab z ∈ (0,L). This
system can then be supplemented by boundary conditions corresponding to the presence of
the source term (2) in the plane z = z0, with z0 > L. In the regions z ∈ (−∞,0), z ∈ (L, z0)

and z ∈ (z0,∞) the medium is homogeneous and the mode amplitudes satisfy the uncoupled
paraxial equations

dǎε

dz
= i

2k
�⊥ǎε,

db̌ε

dz
= − i

2k
�⊥b̌ε.

Taking into account the fact that there is no source in (−∞,0), we find that the right-going
mode amplitudes ǎε are zero in this half-space. By the continuity of the fields pε and ez · uε

at z = 0, this gives the first boundary condition

ǎε(k, z = 0,x) = 0. (11)

Taking into account the fact that there is no source in (z0,∞), we find that the left-going
mode amplitudes b̌ε are zero in this half-space. The jump conditions across the source inter-
face z = z0 then give the relations

b̌ε(k, z−
0 ,x) = −1

2
eikz0/ε2

f̌ (k,x),

ǎε(k, z+
0 ,x) − ǎε(k, z−

0 ,x) = 1

2
e−ikz0/ε2

f̌ (k,x).

By solving the paraxial wave equation for b̌ε in the region z ∈ (L, z0), we obtain the expres-
sion of the complex amplitude of the wave incoming in the random slab at z = L:

b̌ε(k,L,x) = eikz0/ε2
b̌(k,x), (12)

b̌(k,x) = − 1

2(2π)d

∫
f̂ (k,κ)e

i
2k

|κ |2(L−z0)+iκ ·xdκ, (13)

where the transverse spatial Fourier transform is defined by

f̂ (k,κ) =
∫

f̌ (k,x)e−iκ ·xdx. (14)

2.3 Multimode Wave Equations

We shall make use of an invariant embedding step and introduce reflection and transmission
operators. First, we define the transverse Fourier modes

âε(k, z,κ) =
∫

ǎε(k, z,x)e−iκ ·xdx, b̂ε(k, z,κ) =
∫

b̌ε(k, z,x)e−iκ ·xdx, (15)

and make the ansatz

b̂ε(k,0,κ) =
∫

T̂
ε
(k, z,κ,κ ′)b̂ε(k, z,κ ′)dκ ′, (16)

âε(k, z,κ) =
∫

R̂
ε
(k, z,κ,κ ′)b̂ε(k, z,κ ′)dκ ′. (17)
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For b̂ε(k,L,κ ′) giving the incoming wave, T̂
ε
(k,L,κ,κ ′) maps this to the wave b̂ε(k,0,κ)

transmitted to z = 0, while R̂
ε
(k,L,κ,κ ′) maps it to the wave âε(k,L,κ) reflected from

the random slab at z = L.
Using the mode coupling equations (5-6) we find

d

dz
R̂

ε
(k, z,κ,κ ′)

= e
− 2ikz

ε2 L̂ε(k, z,κ,κ ′)

+ e
2ikz

ε2

∫ ∫
R̂

ε
(k, z,κ,κ1)L̂ε(k, z,κ1,κ2)R̂

ε
(k, z,κ2,κ

′)dκ1dκ2

+
∫

L̂ε(k, z,κ,κ1)R̂
ε
(k, z,κ1,κ

′) + R̂
ε
(k, z,κ,κ1)L̂ε(k, z,κ1,κ

′)dκ1,

d

dz
T̂

ε
(k, z,κ,κ ′)

=
∫

T̂
ε
(k, z,κ,κ1)L̂ε(k, z,κ1,κ

′)dκ1

+ e
2ikz

ε2

∫ ∫
T̂

ε
(k, z,κ,κ1)L̂ε(k, z,κ1,κ2)R̂

ε
(k, z,κ2,κ

′)dκ1dκ2,

(18)

in the parabolic white-noise regime described by (10) and where we have defined

L̂ε(k, z,κ1,κ2) = − i

2k
|κ1|2δ(κ1 − κ2) + ik

ε2(2π)d
ν̂

(
z

ε2
,κ1 − κ2

)
, (19)

with ν̂(z,κ) the partial Fourier transform of ν(z,x) as defined by (14). This system is sup-
plemented by the initial conditions

R̂
ε
(k, z = 0,κ,κ ′) = 0, T̂

ε
(k, z = 0,κ,κ ′) = δ(κ − κ ′), (20)

corresponding to the boundary conditions (11–12). The transmission and reflection opera-
tors evaluated at z = L carry all the relevant information about the random medium from
the point of view of the transmitted and reflected waves. In [16] an operator Riccati equa-
tion for the Dirichlet-to-Neumann map is derived from the exact operator factorization of
the Helmholtz equation and used to design a numerical scheme via a finite-dimensional ex-
pansion in local eigenfunctions. The situation considered there is a waveguide with general
boundary conditions and with macroscale and deterministic medium variations. In [14] the
situation with slow transverse modulations of the medium parameters, both for the determin-
istic and random medium components, is discussed. In terms of ray theory this corresponds
to almost straight rays, but with weak random variations. A generalized ray theory is dis-
cussed in [20] where the deterministic medium is smooth and varying in a general way on the
macroscopic scale, while the microscale variations are one-dimensional and varying relative
to a set of level curves, then the rays are general, but deterministic. The latter two formula-
tions are referred to as locally layered media and operator-valued formulations are seth forth
in the corresponding formulations. Here, our focus is on a random medium that varies on a
microscale in all spatial directions according to the scaling theory outlined above and that
is not locally layered. We consider moreover a formulation where the background or deter-
ministic component of the medium is constant so that at the ray theoretical level the picture
is simple enabling us to analyze and characterize the interaction of the wave with a 1 + d-
dimensional microscale random medium, this is our main objective. In particular we aim
at identifying the weak, in a probabilistic sense, asymptotic limit of the distribution-valued
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stochastic transmission and reflection operators in the scaling limit ε → 0 with medium fluc-
tuations that are strongly mixing in the propagation direction z and with a finite correlation
length in the transverse directions.

The outline of the paper is as follows: In Sect. 3 we develop our framework for the
analysis of the incoherent wave field. In Sect. 3.1 we derive a framework with generalized
transport equations that enables us to analyze and describe the fine scale statistical character
of the incoherent fluctuations of the reflected wave field. This leads to a very complicated
system and in Sect. 3.2 we identify a simplified system in the regime of weak backscattering.
This reduced system enables us, for the first time, to address a number of questions regarding
the reflected wave field in the parabolic scaling situation. We consider a number of specific
aspects of the incoherent wave field in Sects. 4 and 5 corresponding respectively to regimes
of small and large Fresnel numbers. In Sect. 6 we turn our attention to the transmitted wave
field. We again derive a system of transport equations that characterizes the transmitted wave
field and its statistics. The regime of weak backscattering discussed in Sect. 6.1 again leads
to a simplified system of transport equations that can be used for explicit characterization of
the transmitted wave field and that goes beyond the regime captured by the classic forward
approximation. We use this framework in Sect. 6.2 to analyze in particular the intensity of
the transmitted wave field. In the appendices we present a number of technical proofs.

3 Asymptotic Analysis of Wave Reflections

In this section and in the companion Section 6 we shall identify a set of equations that can be
used to determine the spectrum of the reflected and transmitted waves. This provides a novel
framework in which a number of applications, in communication and imaging for instance,
can be given a complete mathematical analysis. So far this has only been possible in the
forward approximation or in the layered case or in the case with waveguides, see [9–11] for
a discussion of transport equations in the case of waveguides.

In order to characterize the spectrum of the wave reflection process it is important to
identify correlations at nearby frequencies. They will be characterized by a family of trans-
port equations that we give in Sect. 3.1. In Sect. 3.2 we present a dimensionless form of
this system in the weak backscattering regime. In Sects. 4 and 5 we shall study the reflected
wave in the weak backscattering regime and discuss a few important physical results.

3.1 Generalized Transport Equations for Reflections

The generalized reflection operator R̂
ε

solves (18) with the initial condition (20). Our objec-
tive is now to compute cross moments of the reflection operator using diffusion approxima-
tion theory in the limit ε → 0, in which the phase factors exp(±2ikz/ε2) act as decoupling
terms. We have the following result that is proved in Appendix A.

Proposition 1 Let us introduce some notations. If κp(j),κ ′
p(j) ∈ R

d , j = 1, . . . , np,
κq(l),κ

′
q(l) ∈ R

d , l = 1, . . . , nq, then we denote by p and q the sets

p = {(κp(j),κ ′
p(j))}np

j=1, q = {(κq(l),κ
′
q(l))}nq

l=1, (21)

where np stands for the number of pairs of vectors in p and nq stands for the number of

pairs of vectors in q. We introduce the high-order moments of products of R̂
ε
(k, z,κ,κ ′),
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the reflection process, at two nearby frequencies:

U ε
p,q(k,h, z)

= E

[
np∏

j=1

R̂
ε
(

k + ε2h

2
, z,κp(j),κ ′

p(j)

) nq∏
l=1

R̂
ε
(

k − ε2h

2
, z,κq(l),κ

′
q(l)

)]
. (22)

We define the autocorrelation function of the fluctuations of the medium and its Fourier
transform by

C(z,x) = E[ν(z′ + z,x′ + x)ν(z′,x′)], (23)

Ĉ(k,κ) =
∫

Rd

∫ ∞

−∞
C(z,x)e−i(kz+κ·x)dzdx, (24)

Ĉ±(k,κ) = 2
∫

Rd

∫ ∞

0
C(z,x)e±ikz−iκ·xdzdx. (25)

The family of Fourier transforms

Wε
p,q(k, τ, z) = 1

2π

∫
e−ih[τ−(np+nq)z]U ε

p,q(k,h, z)dh, (26)

converges as ε → 0 to the solution Wp,q of the system of transport equations

∂Wp,q

∂z
+ (np + nq)

∂Wp,q

∂τ
= i

2k
Φp,qWp,q + k2

4(2π)d
(LWW)p,q, (27)

with the initial conditions Wp,q(z = 0, k, τ ) = 10(np)10(nq)δ(τ ). Here we have defined

Φp,q = −
np∑

j=1

(|κp(j)|2 + |κ ′
p(j)|2) +

nq∑
l=1

(|κq(l)|2 + |κ ′
q(l)|2), (28)

(LWW)p,q = −
∫

[npĈ
+(2k,κ) + nqĈ

−(2k,κ) + (np + nq)Ĉ(0,κ)]dκWp,q

−
∫

Ĉ(0,κ)

[
np∑

j=1

Wp|{j |(κp(j)−κ,κ ′
p(j)−κ)},q +

nq∑
l=1

Wp,q|{l|(κq (l)−κ,κ ′
q (l)−κ)

]
dκ

−
np∑

j1 	=j2=1

∫ {
Ĉ(2k,κp(j1) − κ ′

p(j1))Wp|{j1,j2|(κp(j2),κ−κp(j1)),(κ−κ ′
p(j1),κ ′

p(j2))},q

+ 1

2
Ĉ(0,κ)[Wp|{j1,j2|(κp(j1)−κ,κ ′

p(j1)),(κp(j2)+κ,κ ′
p(j2))},q

+ 2Wp|{j1,j2|(κp(j1)−κ,κ ′
p(j1)),(κp(j2),κ ′

p(j2)−κ)},q

+ Wp|{j1,j2|(κp(j1),κ ′
p(j1)−κ),(κp(j2),κ ′

p(j2)+κ)},q]
}
dκ

−
nq∑

l1 	=l2=1

∫ {
Ĉ(2k,κq(l1) − κ ′

q(l1))Wp,q|{l1,l2|(κq (l2),κ−κq (l1)),(κ−κ ′
q (l1),κ ′

q (l2))}
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+ 1

2
Ĉ(0,κ)[Wp,q|{l1,l2|(κq (l1)−κ,κ ′

q (l1)),(κq (l2)+κ,κ ′
q (l2))}

+ 2,Wp,q|{l1,l2|(κq (l1)−κ,κ ′
q (l1)),(κq (l2),κ ′

q (l2)−κ)}

+ Wp,q|{l1,l2|(κq (l1),κ ′
q (l1)−κ),(κq (l2),κ ′

q (l2)+κ)}]
}
dκ

+
np∑

j=1

nq∑
l=1

{
Ĉ(2k,κp(j) − κ ′

p(j))δ(κp(j) − κ ′
p(j) − κq(l) + κ ′

q(l))Wp|j,q|l

+
∫

Ĉ(0,κ)[Wp|{j |(κp(j)−κ,κ ′
p(j))},q|{l|(κq (l)−κ,κ ′

q (l))}

+ Wp|{j |(κp(j),κ ′
p(j)−κ)},q|{l|(κq (l),κ ′

q (l)−κ)}

+ Wp|{j |(κp(j)−κ,κ ′
p(j))},q|{l|(κq (l),κ ′

q (l)+κ)}

+ Wp|{j |(κp(j),κ ′
p(j)−κ)},q|{l|(κq (l)+κ,κ ′

q (l))}]dκ

+
∫ ∫ ∫

Ĉ(2k,κ1)

× Wp|{j |(κp(j),κ2),(κ2−κ1,κ ′
p(j))},q|{l|(κq (l),κ3),(κ3−κ1,κ ′

q (l))}dκ1dκ2dκ3

}

and we have used notations of types:

p|j ′ = {(κp(j),κ ′
p(j))}np

j=1 	=j ′ , q|l′ = {(κq(l),κ
′
q(l))}nq

l=1 	=l′ ,

p|{j ′|(κ1,κ2)} = {(κp(j),κ ′
p(j))}np

j=1 	=j ′ ∪ (κ1,κ2),

q|{l′|(κ1,κ2)} = {(κq(l),κ
′
q(l))}nq

l=1 	=l′ ∪ (κ1,κ2).

The set of transport equations describes accurately the reflected wave and it is the key tool
to analyze various applications with waves in random media. The corresponding transport
equations in the layered case with one-dimensional medium fluctuations were first obtained
in [1]. They have played a crucial role in the analysis of a wide range of applications and
they have been generalized to describe a wide range of propagation scenarios in [8]. The
transport equations given in Proposition 1 provide a rigorous tool for studying the multiple
scattering effects in a non-layered random medium.

We can now make a few general comments about the system of transport equations and
the associated moments Wp,q.

(1) Consider the set of moments Wp,q such that np − nq = c with c a nonzero integer.
These moments form a closed subfamily with each member satisfying a zero initial con-
dition. Therefore, these moments vanish and only moments having the same number of
conjugated and unconjugated terms np = nq survive in the limit ε → 0.

(2) Consider the layered case in which ν(z,x) = ν(z) and therefore Ĉ(k,κ) =
(2π)dĈ(k)δ(κ). Under these conditions, the equations (18) for the operator components
with different wavevectors are not coupled, R̂

ε
(k, z,κ,κ ′) is concentrated on κ = κ ′. In

fact the reflection operator has the form R̂
ε
(k, z,κ,κ ′) = R̂ε(k, z)δ(κ − κ ′). The analysis
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of the system for the moments shows that the solution has the form

Wp,q(k, τ, z) =
⎧⎨
⎩

wn(k, τ, z)
∏n

j=1 δ(κp(j) − κ ′
p(j))

∏n

l=1 δ(κq(l) − κ ′
q(l))

if np = nq = n,

0 otherwise,

where the family (wn)n∈N is solution of the closed system of transport equations

∂wn

∂z
+ 2n

∂wn

∂τ
= k2Ĉ(2k)n2

4
(wn+1 + wn−1 − 2wn), (29)

with the initial conditions wn(k, τ, z = 0) = 10(n)δ(τ ). We therefore obtain that the mo-
ments of the reflection operator satisfy the system that governs the propagation of one-
dimensional waves in random media [8].

(3) If the autocorrelation function of the process ν(x, z) is such that

Ĉ(2k,κ) = 0 for all κ ∈ R
d , (30)

then there is only coupling in the system of transport equations for indices (p,q) and (p′,q′)
such that np = np′ and nq = nq′ . Since the initial conditions are zero for all non-empty in-
dices (p,q), the moments Wp,q are zero as soon as np or nq is positive. In other words

R̂
ε
(k, z,κ,κ ′) = 0 for all κ,κ ′ ∈ R

d in distribution as ε → 0. This shows that the forward-
scattering approximation is valid as soon as the condition (30) is fulfilled. This approxima-
tion is frequently used in the literature. Here we give the necessary and sufficient condition
(30) for the validity of this approximation.

(4) The reciprocity principle shows that R̂
ε
(k, z,κ,κ ′) = R̂

ε
(k, z,−κ ′,−κ) for any

κ,κ ′ ∈ R
d . This can be seen from (18). Therefore the symmetry relation Wp,q = Wp̃,q̃ is sat-

isfied for p̃ (respectively q̃) obtained from p (respectively q) by changing some of the pairs
(κp(j),κ ′

p(j)) into (−κ ′
p(j),−κp(j)) (respectively (κq(l),κ

′
q(l)) into (−κ ′

q(l),−κq(l))).

3.2 The Weak Backscattering Regime

A central quantity that characterizes the backscattered wave field is the cross spectral density

lim
ε→0

E[R̂ε
(k, z,κ1,κ2)R̂

ε
(k, z,κ3,κ4)] =

∫
W(κ1,κ2),(κ3,κ4)(k, τ, z)dτ. (31)

This quantity describes the density of the reflected wave field at the surface z = L. We are
interested in this quantity in the regime of weak backscattering. This regime derives from
the modeling assumption

Ĉ(2k,κ)

Ĉ(0,0)
≤ δ � 1, ∀κ ∈ R

d . (32)

It follows that

Wp,q =
⎧⎨
⎩

1 if np = nq = 0,

O(δ) if np = nq = 1,

O(δ2) otherwise.

Denoting p1 = (κ1,κ2) and q1 = (κ3,κ4) we have up to terms of order δ2 the following
result.
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Proposition 2 In the weak backscattering regime (32) the limit moments W(κ1,κ2),(κ3,κ4) are
given by the system of transport equations

∂W(κ1,κ2),(κ3,κ4)

∂z
+ 2

∂W(κ1,κ2),(κ3,κ4)

∂τ

= i

2k
[−(|κ1|2 + |κ2|2) + (|κ3|2 + |κ4|2)]W(κ1,κ2),(κ3,κ4)

+ k2

4(2π)d

∫
Ĉ(0,κ){W(κ1−κ,κ2),(κ3−κ,κ4) + W(κ1,κ2−κ),(κ3,κ4−κ)

+ W(κ1−κ,κ2),(κ3,κ4+κ) + W(κ1,κ2−κ),(κ3+κ,κ4)

− W(κ1−κ,κ2−κ),(κ3,κ4) − W(κ1,κ2),(κ3−κ,κ4−κ)

− 2W(κ1,κ2),(κ3,κ4)}dκ

+ k2

4(2π)d
Ĉ(2k,κ1 − κ2)δ(κ1 − κ2 − κ3 + κ4)δ(τ ),

(33)

starting from W(κ1,κ2),(κ3,κ4)(k, τ, z = 0) = 0.

Therefore W(κ1,κ2),(κ3,κ4) will be supported on κ1 − κ2 − κ3 + κ4 = 0 so that we can
parameterize the solution in terms of three “effective” wavevectors.

From now on we consider a fixed frequency k and omit it in the notation. We introduce
the dimensionless autocorrelation function C of the random medium:

E[ν(z′,x′)ν(z′ + z,x′ + x)] = σ 2C
(

z

lz
,

x
lx

)
,

where lz (respectively lx ) is the longitudinal (respectively transverse) correlation radius of
the random fluctuations, and σ is the standard deviation of the fluctuations. We denote by
ĈK(μ) and by ČK(λ) the full and partial Fourier transforms

ĈK(μ) =
∫ ∞

−∞

∫
Rd

C(ζ,λ)e−iKζ−iμ·λdλdζ, ČK(λ) =
∫ ∞

−∞
C(ζ,λ)e−iKζ dζ.

By integrating in τ the result of Proposition 2 we obtain the following convergence result.

Proposition 3 We have as ε → 0

E[R̂ε
(z,κ ′

0 + κ,κ ′
0)R̂

ε
(z,κ ′

1 + κ ′,κ ′
1)] ε→0−→ δ(κ ′ − κ)Dκ ′

0,κ ′
1,κ (z), (34)

where the cross spectral density D is of the form

Dκ ′
0,κ ′

1,κ (z) = D̄ exp

[
−i(κ ′

0 − κ ′
1) · (κ ′

0 + κ ′
1 + κ)

z

k

]

×D
(

z

L
, (κ ′

0 − κ ′
1)lx, (κ

′
0 + κ ′

1 + κ)lx,κ lx

)
, (35)
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with

D̄ = k2σ 2lzl
d
x LČ2klz (0)

4(2π)d
.

The dimensionless cross spectral density D(ζ,u,v,w) solves

dD(ζ,u,v,w)

dζ

= Ĉ2klz (w)

Č2klz (0)
eiαu·vζ − 2β

(2π)d

∫
Ĉ0(μ)dμD(ζ,u,v,w)

+ β

(2π)d

∫
Ĉ0(μ)[eiαμ·vζD(ζ,u − μ,v,w + μ) + e−iαμ·vζD(ζ,u + μ,v,w + μ)]dμ

+ β

(2π)d

∫
Ĉ0(μ)[eiαμ·uζD(ζ,u,v − μ,w + μ)

+ e−iαμ·uζD(ζ,u,v + μ,w + μ)]dμ

− β

(2π)d

∫
Ĉ0(μ)e−iαμ·uζ [e−iαμ·(v+μ)ζD(ζ,u + μ,v + μ,w)

+ eiαμ·(v+μ)ζD(ζ,u − μ,v + μ,w)]dμ, (36)

starting from D(ζ = 0,u,v,w) = 0. The dimensionless parameters α and β are given by

α = L

kl2
x

, β = k2Lσ 2lz

4
. (37)

For a given propagation distance L, the parameter α is the inverse of the Fresnel number
at the transverse scale lx and it characterizes the strength of diffraction at this scale, while
the parameter β characterizes the strength of random forward scattering.

Note that the cross spectral density is symmetric in (u,v): D(ζ,u,v,w) = D(ζ,v,u,w).
This can be seen from the structure of the system (36) for D, and this also follows directly
from the reciprocity relation R̂

ε
(κ,κ ′) = R̂

ε
(−κ ′,−κ).

As a first application, we compute the total mean reflected power defined by:

P ε =
∫

E[|ǎε(L,x)|2]dx.

Corollary 1 The total mean reflected power P ε has the limit P as ε → 0 given by

P = βČ2klz (0)

∫
|b̌(x)|2dx, (38)

where b̌(x) stands for the incoming wave (13).

Proof Using Parseval’s formula we obtain

P ε = 1

(2π)d

∫
E[|âε(L,κ)|2]dκ

= 1

(2π)d

∫ ∫ ∫
E[R̂ε

(L,κ,κ ′)R̂
ε
(L,κ,κ ′′)]b̂(κ ′)b̂(κ ′′)dκdκ ′dκ ′′,
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where b̂(κ) stands for the incoming wave. By the convergence (34) the total mean reflected
power P ε has the limit P as ε → 0 given by

P = 1

(2π)d

∫ ∫
Dκ ′,κ ′,κ−κ ′(L)|b̂(κ ′)|2dκdκ ′ = 1

(2π)d

∫ ∫
Dκ ′,κ ′,κ (L)|b̂(κ ′)|2dκdκ ′.

Using the identity (35) this can also be written as

P = D̄l−d
x

(2π)d

∫
E(1,2κ ′lx)|b̂(κ ′)|2dκ ′,

where E(ζ,v) = ∫
D(ζ,0,2v + w,w)dw. Then, using the system of coupled differential

equations (36), we get that the function E(ζ,v) satisfies

dE(ζ,v)

dζ
= (2π)d + β

(2π)d

∫
Ĉ0(μ)[E(ζ,v + μ) − E(ζ,v)]dμ,

because all but two of the terms of the right-hand side of (36) cancel each other when taking
(u,v,w) → (0,2v + w,w) and integrating in w. The initial condition is E(ζ = 0,v) = 0 and
the solution is the function E(ζ,v) = (2π)dζ independent of v. We finally obtain that the
total mean reflected power is

P = D̄l−d
x

∫
|b̂(κ)|2dκ = k2σ 2lzLČ2klz (0)

4

∫
|b̌(x)|2dx.

which also reads as (38). �

This corollary shows that the total mean reflected power grows like L by the expression
(37) of β . This behavior is expected in the weak backscattering regime, as the proportion of
wave energy scattered back increases linearly with the propagation distance. Moreover, the
total mean reflected power does not depend on α, which is rather natural since transverse
effects do not modify the total longitudinal flux of energy. The reflected power is however
proportional to β , which is the strength of random forward scattering.

We remark that in Appendix E we give a simple interpretation of the weak backscattering
regime and the associated intensity of the reflected wave in terms of random mirrors and
two-phase transmissions.

4 The Weak Backscattering Regime when α � 1

In Sect. 4.1 we will analyze the system (36) for D in the limit case α → ∞. This result
will allow us to get closed-form expressions for the physically relevant quantities. We will
consider the beam width (Sect. 4.2), the spectral width (Sect. 4.3), and the mean power pro-
file (Sect. 4.4). In the last Sect. 4.5 we will present and discuss the enhanced backscattering
phenomenon.

4.1 Asymptotic Expressions for the Cross Spectral Density

In the next two lemmas we give the asymptotic expressions for the dimensionless cross
spectral density in the regime α � 1.
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Lemma 1

1. There exists Cβ such that supu,v,w∈Rd ,ζ∈[0,1] |D(ζ,u,v,w)| ≤ Cβ uniformly in α.
2. If u · v 	= 0, then limα→∞ D(ζ,u,v,w) = 0.
3. If u 	= 0, v 	= 0, and u · v = 0, then

lim
α→∞D(ζ,u,v,w) = Ĉ2klz (w)

Č2klz (0)

1 − e−2βČ0(0)ζ

2βČ0(0)
. (39)

4. If u = 0 and v 	= 0, then limα→∞ D(ζ,0,v,w) = D0(ζ,w) where D0(ζ,w) is the solution
of

dD0(ζ,w)

dζ
= Ĉ2klz (w)

Č2klz (0)
+ 2β

(2π)d

∫
Ĉ0(μ)[D0(ζ,w + μ) −D0(ζ,w)]dμ, (40)

starting from D0(ζ = 0,w) = 0.
5. If u 	= 0 and v = 0, then limα→∞ D(ζ,u,0,w) = D0(ζ,w).
6. If u = 0 and v = 0, then

lim
α→∞D(ζ,0,0,w) = 2D0(ζ,w) − Ĉ2klz (w)

Č2klz (0)

1 − e−2βČ0(0)ζ

2βČ0(0)
.

This Lemma is proved in Appendix C. By comparing the third and fourth items (or the fifth
and sixth items) a sharp transition is noticed from the case u = 0 to u 	= 0. This transition
can be studied in detail by looking at small u of order α−1.

Lemma 2

1. If v 	= 0, then limα→∞ D(ζ,α−1s,v,w) = Ds(ζ,v,w) where Ds is solution of

dDs(ζ,v,w)

dζ
= Ĉ2klz (w)

Č2klz (0)
eis·vζ + β

(2π)d

∫
Ĉ0(μ)[eis·μζDs(ζ,v − μ,w + μ)

+ e−is·μζDs(ζ,v + μ,w + μ) − 2Ds(ζ,v,w)]dμ (41)

starting from Ds(ζ = 0,v,w) = 0.
2. If v = 0, then

lim
α→∞D(ζ,α−1s,0,w) = Ds(ζ,0,w) +D0(ζ,w) − Ĉ2klz (w)

Č2klz (0)

1 − e−2βČ0(0)ζ

2βČ0(0)
.

Note that, if s = 0, then Ds(ζ,v,w) |s=0= D0(ζ,w) as defined by (40), which shows
the consistency of the notations. By solving the differential equation (41) we obtain the
following integral representation of Ds(ζ,v,w) valid for all s ∈ R

d :

Ds(ζ,v,w) =
∫ Č2klz (λ)

Č2klz (0)
e−iw·λ

∫ ζ

0
eiv·s(ζ−ζ ′)

× eβ
∫ ζ ′

0 Č0(λ−sζ ′′)+Č0(λ+sζ ′′)−2Č0(0)dζ ′′
dζ ′dλ. (42)
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In the particular case where s = 0 the function Ds is independent of v and we have

D0(ζ,w) =
∫ Č2klz (λ)

Č2klz (0)
e−iw·λ

∫ ζ

0
e2β[Č0(λ)−Č0(0)]ζ ′

dζ ′dλ.

In Appendix D we give a few identities that are useful in the following.

4.2 Beam Width

We define the rms (root-mean-squared) width Rε of the reflected beam by

Rε2 =
∫ |x|2E[|ǎε(x,L)|2]dx∫

E[|ǎε(x,L)|2]dx
. (43)

Proposition 4 The beam width Rε converges to R as ε → 0, where R is given by

R2 =
∫∫

Dκ ′,κ ′,κ (L)|∇κ ′ b̂(κ ′)|2dκdκ ′ − ∫∫
1
2 (�κ ′

0
+ �κ ′

1
)Dκ ′,κ ′,κ (L)|b̂(κ ′)|2dκdκ ′

∫∫
Dκ ′,κ ′,κ (L)|b̂(κ ′)|2dκdκ ′

+
∫∫

i(∇κ ′
0
− ∇κ ′

1
)Dκ ′,κ ′,κ(L) Im(b̂(κ ′)∇κ ′ b̂(κ ′))dκdκ ′

∫∫
Dκ ′,κ ′,κ (L)|b̂(κ ′)|2dκdκ ′ , (44)

where Dκ ′
0,κ ′

1,κ(z) is given by (35). If Č0 and Č2klz are twice differentiable at 0, then we have
in the regime α � 1:

R2 = R2
0 − 2

3
�Č0(0)l2

xα
2β + 4

3
K2

0 l4
xα

2 + 2Q0l
2
xα − �Č2klz (0)

3Č2klz (0)
l2
xα

2, (45)

with R0 (respectively K0) the rms beam width (respectively spectral width) of the input beam:

R2
0 =

∫ |x|2|b̌(x)|2dx∫ |b̌(x)|2dx
, K2

0 =
∫ |κ |2|b̂(κ)|2dκ∫ |b̂(κ)|2dκ

, (46)

and Q0 can be referred to as the chirp of the input beam defined by

Q0 =
∫

κ · Im(b̂(κ)∇κ b̂(κ))dκ∫ |b̂(κ)|2dκ
= − ∫

x · Im(b̌(x)∇xb̌(x))dx∫ |b̌(x)|2dx
. (47)

Proof Using Parseval’s formula we obtain

Rε2 =
∫∫∫

E[∇κR̂
ε
(L,κ,κ ′)∇κR̂

ε
(L,κ,κ ′′)]b̂(κ ′)b̂(κ ′′)dκdκ ′dκ ′′

∫∫∫
E[R̂ε

(L,κ,κ ′)R̂
ε
(L,κ,κ ′′)]b̂(κ ′)b̂(κ ′′)dκdκ ′dκ ′′

.

By the convergence (34) the beam width Rε converges to R as ε → 0, where R is given
by (44). By the identity (35) we have

1

2
(�κ ′

0
+ �κ ′

1
)Dκ ′,κ ′,κ (z) = D̄l2

xF1

(
z

L
, (2κ ′ + κ)lx,κ lx

)
,

(∇κ ′
0
− ∇κ ′

1
)Dκ ′,κ ′,κ (z) = D̄lxF2

(
z

L
, (2κ ′ + κ)lx,κ lx

)
,
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with

F1(ζ,v,w) = [�u + �v − 2αiζv · ∇u − α2ζ 2|v|2]D(ζ,u,v,w) |u=0,

F2(ζ,v,w) = [2∇u − 2αiζv]D(ζ,u,v,w) |u=0 .

In the limit α → ∞, we obtain by using (85–90):

1

(2π)dD̄α2

∫
1

2
(�κ ′

0
+ �κ ′

1
)Dκ ′,κ ′,κ (L)dκ

α→∞−→ 1

3

�Č2klz (0)

Č2klz (0)
− 4

3
|κ ′|2l2

x + 2β

3
�Č0(0),

1

(2π)dD̄α

∫
(∇κ ′

0
− ∇κ ′

1
)Dκ ′,κ ′,κ (L)dκ

α→∞−→ −2iκ ′lx,

where we have used the fact that
∫

wD0(1,w)dw = 0. The first limit holds true (in the sense
that the right-hand side is finite) only if Č0 and Č2klz are twice differentiable at 0. The non-
differentiable case will be addressed in Section 4.4. Substituting these limits into (44) we
obtain that, in the large-α regime, the beam radius is given by (45). �

Using the expressions for α and β , the expression (45) of the beam width also reads:

R2 = R2
0 − 1

6
�Č0(0)

σ 2lzL
3

l2
x

+ 4

3

L2

k2
K2

0 + 2Q0
L

k
− �Č2klz (0)

3Č2klz (0)

L2

k2l2
x

.

We can interpret all terms in this sum:

1. The first term (with R0) is the initial beam width.
2. The second term (with �Č0(0)) is the spreading effect due to random forward scattering;

it is the only term (along with the initial beam width) that is independent of k (i.e., of the
frequency).

3. The third term (with K0) is due to the natural beam diffraction; this term is independent
of the random medium.

4. The fourth term (with Q0) is a convergence or divergence effect due to the initial beam
phase front; this term is independent of the random medium, and it is the only one in the
sum that can be negative; the condition Q0 < 0 means that the input beam has an initial
phase front that makes it converge, but this convergence is eventually overwhelmed by
natural diffraction, and also by spreading induced by random scattering.

5. The last term (with �Č2klz (0)) is the spreading induced by random backward scattering.

In the regime β � 1 the main spreading effect is due to random forward scattering and
all other effects become negligible. The beam width is of order αβ1/2lx . It is given explicitly
by

R2 = −2

3
�Č0(0)l2

xα
2β = −1

6
�Č0(0)

σ 2lzL
3

l2
x

, (48)

which shows that the beam width increases like L3/2.

4.3 Spectral Width

We define the rms spectral width Kε of the reflected beam by

Kε2 =
∫ |κ |2E[|âε(κ,L)|2]dκ∫

E[|âε(κ,L)|2]dκ
. (49)
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Proposition 5 The spectral width Kε converges to K as ε → 0, where K is given by

K2 =
∫∫ |κ + κ ′|2Dκ ′,κ ′,κ(L)|b̂(κ ′)|2dκdκ ′∫∫

Dκ ′,κ ′,κ (L)|b̂(κ ′)|2dκdκ ′ . (50)

If Č0 and Č2klz are twice differentiable at 0, then we have in the regime α � 1:

K2 = K2
0 − �Č0(0)l−2

x β − �Č2klz (0)

Č2klz (0)
l−2
x , (51)

where K0 is the spectral width (46) of the incoming beam.

Proof The spectral width is given by

Kε2 =
∫∫∫ |κ |2E[R̂ε

(L,κ,κ ′)R̂
ε
(L,κ,κ ′′)]b̂(κ ′)b̂(κ ′′)dκdκ ′dκ ′′

∫∫∫
E[R̂ε

(L,κ,κ ′)R̂
ε
(L,κ,κ ′′)]b̂(κ ′)b̂(κ ′′)dκdκ ′dκ ′′

.

By the convergence result (34) the spectral width Kε converges to K given by (50). By (35)
and Lemma 1 we get

lim
α→∞ K2 = l−2

x

∫ |w|2D0(1,w)dw∫
D0(1,w)dw

+
∫ |κ ′|2|b̂(κ ′)|2dκ ′∫ |b̂(κ ′)|2dκ ′ ,

where we have used the fact that
∫

wD0(1,w)dw = 0. This limit holds true if Č0 and Č2klz

are twice differentiable at 0. We can compute the integrals by using (85) and (87) which
gives (51). �

Substituting the value of β in the expression (51) of the spectral width, we obtain

K2 = K2
0 − 1

4
�Č0(0)

k2Lσ 2lz

l2
x

− �Č2klz (0)

Č2klz (0)

1

l2
x

.

The first term K2
0 is the initial spectral width (squared). The second term (with �Č0(0))

is the spectral broadening due to random forward scattering. The third term is the spectral
broadening due to random backward scattering. In the regime β � 1 the spectral broadening
is dominated by the second term (random forward scattering) and the spectral width grows
like L1/2.

4.4 Mean Reflected Power

The mean reflected power is defined by

I ε(x) = E[|ǎε(L,x)|2].

Proposition 6 The mean reflected power I ε(x) converges to I (x) as ε → 0, where

I (x) = 1

(2π)2d

∫ ∫ ∫
b̂(κ ′

0)b̂(κ ′
1)e

i(κ ′
0−κ ′

1)·xDκ ′
0,κ ′

1,κ (L)dκdκ ′
0dκ ′

1. (52)
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This can also be written as

I (x) = P

ldx
I
(

x
lx

)
, (53)

with P the total mean reflected power given by (38) and

lim
α→∞ αdI(αy) = D̄l−2d

x

P (2π)d

∫ ∫ ∫ 1

0

∣∣∣∣b̂
(

v
lx

)∣∣∣∣
2 Č2klz (sζ )

Č2klz (0)
eis·(y−2vζ )

× eβ
∫ 2ζ

0 Č0(sζ ′)−Č0(0)dζ ′
dζdvds. (54)

Proof The mean reflected power is

I ε(x) = 1

(2π)2d

∫ ∫ ∫ ∫
ei(κ1−κ2)·x

E[R̂ε
(L,κ1,κ

′
1)R̂

ε
(L,κ2,κ

′
2)]

× b̂(κ ′
1)b̂(κ ′

2)dκ1dκ ′
1dκ2dκ ′

2.

By Proposition 3 we obtain that the limit of I ε(x) as ε → 0 is (52). Using the dimensionless
cross spectral density D (identity (35)) this can also be written as (53) with

I(y) = D̄l−2d
x

P 23dπ2d

∫ ∫ ∫
b̂

(
v + u − w

2lx

)
b̂

(
v − u − w

2lx

)

× eiu·yD(1,u,v,w)e−iαu·vdudvdw.

In the regime α � 1, we have seen (in the case in which Č is smooth) that the beam width is
of order αβ1/2lx , so we look for the beam power profile at this particular scale (in the general
case in which Č is smooth or not). By Lemma 2 we obtain

lim
α→∞αdI(αy) = D̄l−2d

x

P 23dπ2d

∫ ∫ ∫ ∣∣∣∣b̂
(

v − w
2lx

)∣∣∣∣
2

Ds(1,v,w)eis·(y−v)dsdvdw.

Substituting the expression (42) of Ds(1,v,w) and integrating in λ and w gives (54). �

The regime β � 1 corresponds to strong forward scattering. The asymptotic analysis of
this regime shows that we have to distinguish the cases in which Č(s) is smooth at 0 or not.

Let us first consider the case in which Č(s) is twice differentiable at 0 and can be ex-
panded as Č0(s) � Č0(0) − 1

2 Č
′′
0 |s|2 + o(|s|2), with Č′′

0 > 0. This corresponds to a smooth
random medium. Since we know that the beam width is of order αβ1/2lx , we look at the
power profile at this particular scale and we obtain

lim
β→∞ lim

α→∞ αdβd/2I(αβ1/2y) = 1

[Č′′
0 ]d/2

Q
(

y

[Č′′
0 ]1/2

)
,

where

Q(y) = 1

(2π)d/2

∫ 1

0
e

− |y|2
2

3
8ζ3

(
3

8ζ 3

)d/2

dζ.

The dimensionless power profile Q(y) is normalized so that
∫
Q(y)dy = 1. Therefore we

can check that the asymptotic expressions satisfy
∫
I(y)dy = 1 and

∫
I (x)dx = P . We can
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also check that the rms width of the asymptotic profile is (48), using the identity �Č0(0) =
−dČ′′

0 . Moreover, the power profile has a Gaussian tail for large |y|, of the form

Q(y) � 3
d
2 −2

4d−2π
d
2

1

|y|2 e− 3|y|2
16 , |y| � 1.

The local shape of the dimensionless power profile for small |y| gives a power divergence
Q(y) � 2−3/43−2/3π−d/2�(d

2 − 1
3 )|y|2/3−d (at the scale αβ1/2y). This is given by the contri-

butions of reflections that occur close to the surface z = L.
Let us now consider the case in which Č0(s) is not smooth at 0 and has the form Č0(s) =

Č0(0)− Č′
0|s|+o(|s|), with Č′

0 > 0. This corresponds to a rough random medium, with jumps
in the derivative of ν or in ν itself. We find that

lim
β→∞ lim

α→∞ αdβdI(αβy) = 1

[Č′
0]d

Q
(

y

Č′
0

)
,

where

Q(y) = 1

22d−1π

∫ 1

0

1

(1 + |y|2
4ζ 4 )

d+1
2

1

ζ 2d
dζ

is such that
∫
Q(y)dy = 1. We obtain a power law decay at infinity and a power divergence

at 0:

Q(y)
|y|�1� 1

32d−2π |y|d+1
, Q(y)

|y|�1� 1

2
3d
2 + 5

4 π

�( 5
8 + d

4 )�( d
4 − 1

8 )

�( d
2 + 1

2 )

1

|y|d− 1
2

.

Note that it is not possible to define a rms beam width in this case, as it is infinite due to the
heavy tail |y|−1−d as |y| → ∞. However, if we define loosely the beam width as the typical
radius of the mean power profile (the full width at half maximum, for instance), then we
can claim that the beam width is of order αβlx , that is, proportional to L2 in the physical
variables. This can be contrasted with the result obtained in the case of a smooth random
medium, where the beam has Gaussian tail and a width of order L3/2.

4.5 Enhanced Backscattering

Enhanced backscattering (or weak localization) is a well-known phenomenon in physics [2,
26] and it has been observed in several experimental contexts [15, 24, 25, 28]. To summarize,
when an incoming monochromatic quasi-plane wave is applied with a given incidence angle,
the mean reflected power has a local maximum in the backscattered direction, which is
usually twice as large as the mean reflected power in the other directions. In this section, we
give a mathematical proof of enhanced backscattering and we compute the maximum, the
angular width, and the shape of the enhanced backscattering cone.

We will analyze the following experiment: for a given κ0, we send a quasi-plane wave of
unit power, carrier wavevector κ0, and angular aperture much smaller than α−1(klx)

−1, and
we record the reflected power in the backscattered direction −κ0 or close to it, in a cone of
angular aperture of order α−1(klx)

−1. Accordingly we observe

|âε(L,−κ0 + α−1κ)|2 =
∣∣∣∣
∫

R̂
ε
(L,κ ′,−κ0 + α−1κ)b̂(κ ′)dκ ′

∣∣∣∣
2

.
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If we average with respect to the random medium, and consider the asymptotic regime ε →
0, we find that we observe in fact

Pκ,κ0 = lim
ε→0

E[|âε(L,−κ0 + α−1κ)|2] =
∫

Dκ ′,κ ′,−κ0−κ ′+α−1κ (L)|b̂(κ ′)|2dκ ′.

If we take into account the fact that the angular aperture of the input beam is very small, i.e.
much smaller than α−1(klx)

−1, then we find that the mean reflected power observed in the
relative direction κ is

Pκ,κ0 = Dκ0,κ0,−2κ0+α−1κ (L). (55)

Finally, we average the results over κ0 and we obtain the quantity

Pκ = 2d

∫
Dκ0,κ0,−2κ0+α−1κ (L)dκ0. (56)

This is the mean power reflected by the random slab (0,L) × R
d in the backscattered di-

rection (for κ = 0) or close to the backscattered direction, in a direction whose angle with
respect to the backscattered direction is of order α−1(klx)

−1 (for κ 	= 0).
Note: the averaging with respect to the random medium is probably not necessary be-

cause we expect that the averaging with respect to κ0 is sufficient to ensure the averaging
with respect to the random fluctuations. A proof of this self-averaging property would re-
quire to study higher-order moments, which is beyond the scope of this paper.

Proposition 7 In the regime α � 1 the mean power reflected in the direction κ relative to
the backscattered direction has the form

lim
α→∞ Pκ = l−d

x D̄(2π)dP(κ lx), (57)

with

P(s) = 1 +
∫ 1

0
e2β

∫ ζ
0 Č0(sζ ′)−Č0(0)dζ ′

dζ − 1 − e−2βČ0(0)

2βČ0(0)
. (58)

Proof By Lemma 2 we obtain (57) with

P(s) = 1

(2π)d

∫
D0(1,w) +Ds(1,0,w) − Ĉ2klz (w)

Č2klz (0)

1 − e−2βČ0(0)

2βČ0(0)
dw.

The computation of the integral with respect to w gives (58). �

The mean reflected power in an arbitrary direction out of the small cone around the
backscattered direction can be obtained by taking the limit |s| → ∞:

lim|s|→∞P(s) = 1.

The maximum of the enhanced backscattering cone is reached at s = 0, that is, for the exact
backscattered direction, and this maximum is given by

max
s∈Rd

P(s) = P(0) = 2 − 1 − e−2βČ0(0)

2βČ0(0)
, (59)
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which takes values in the interval (1,2). In the weak forward-scattering regime β � 1,
the enhancement factor is equal to 1. In the strong forward-scattering regime β � 1, the en-
hancement factor is equal to 2. Formula (59) was found in Refs. [3, 4] by using diagrammatic
expansions. These references are prior to the recent research on enhanced backscattering and
weak localization, and formula (59) is in these references called “enhancement of the Born
approximation”.

The shape P(s) of the cone is given by (58) for any value of β . We can give a more
quantitative description in the regime β � 1 but this analysis requires us to distinguish the
cases in which Č0 is smooth or not at 0.

Let us first consider the case in which Č0(s) is twice differentiable at 0 and can be ex-
panded as Č0(s) � Č0(0) − 1

2 Č
′′
0 |s|2 + o(|s|2), with Č′′

0 > 0. We find that

lim
β→∞P(β−1/2s) = Q([Č′′

0 ]1/2s), Q(s) = 1 +
∫ 1

0
e− ζ3

3 |s|2dζ.

For small |s|, we have Q(s) � 2− 1
12 |s|2, which shows that the peak is smooth. For large |s|,

we obtain Q(s) � 1 + 2π3−7/6

�(2/3)
|s|−2/3. This shows that the angular aperture of the enhanced

backscattering cone is of order

AEBC = 1

[Č′′
0 ]1/2klxαβ1/2

∼ lx

kL3/2l
1/2
z σ

.

Let us now consider the case in which Č0(s) is not smooth at 0 and has the form Č0(s) =
Č0(0) − Č′

0|s| + o(|s|), with Č′
0 > 0. We find that

lim
β→∞P(β−1s) = Q([Č′

0]s), Q(s) = 1 +
∫ 1

0
e−ζ 2|s|dζ.

For small |s| we have Q(s) � 2 − 1
3 |s|, which shows that the peak is not smooth but has a

cusp. For large |s|, we obtain Q(s) � 1 + π1/2

2 |s|−1/3. This shows that the angular aperture
of the enhanced backscattering cone is of order

AEBC = 1

[Č′
0]klxαβ

∼ lx

k2L2lzσ 2
.

Figure 3 plots the enhanced backscattering cone for different values of β and for two differ-
ent autocorrelation functions.

Note: we have obtained that the beam width R is of order αβ1/2lx (for a smooth medium)
or αβlx (for a rough medium), while the angular aperture AEBC of the enhanced backscat-
tering cone is of order α−1β−1/2(klx)

−1 (for a smooth medium) or α−1β−1(klx)
−1 (for a

rough medium). Therefore, the relation AEBC ∼ 1/(kR) is always satisfied. This relation is
in agreement with the physical interpretation of enhanced backscattering as a constructive
interference between pairs of wave “paths” and reversed paths (see Fig. 4). The sum of all
these constructive interferences should give an enhancement factor of 2 in the backscattered
direction. If the reflected wave is observed with an angle A compared to the backscattered
direction, then the phase shift between the direct and reversed paths is ke = kd sinA, where
d is the typical transverse size of a wave path, which is in our setting of the order of the
beam width R. Therefore, constructive interference is possible if kRA ≤ 1, which gives
the angular aperture of the enhanced backscattering cone. This “path” interpretation is not



468 J. Garnier, K. Sølna

Fig. 3 Enhanced backscattering cone P(s) for a Gaussian autocorrelation function
Č0(s) = Č0(0) exp(−|s|2) (left) and an exponential autocorrelation function Č0(s) = Č0(0) exp(−|s|)
(right). The four peaks represent four different values of the parameter β̄ = 2βČ0(0): β̄ = 0.25 (dotted),
β̄ = 1 (dot-dashed), β̄ = 4 (dashed), and β̄ = 16 (solid). Note that the enhancement factor (i.e. the maximum
of the peak) depends only on β̄

Fig. 4 Physical interpretation of
the scattering of a plane wave by
a random medium. The output
wave in direction A is the
superposition of many different
scattering paths. One of these
paths is plotted as well as the
reversed path. The phase
difference between the two
outgoing waves is ke = kd sinA

used in our paper, but we recover the physical result by exploiting our system of transport
equations.

Finally, in this section we have mainly studied the mean reflected power observed in the
relative direction κ averaged over the incident directions (56). If we are interested in the
mean reflected power observed in the relative direction κ for a given incident direction κ0,
given by (55), then we find

lim
α→∞Pκ,κ0 = D̄P−2κ0lx (κ lx),

with

Pw(s) =
∫ Č2klz (λ)

Č2klz (0)
e−iw·λ

∫ 1

0
e−2βČ0(0)ζ [eβ

∫ ζ
−ζ Č0(λ+sζ ′)dζ ′ + e2βČ0(λ)ζ − 1]dζdλ.

We have in particular

lim|s|→∞Pw(s) = Ĉ2klz (w)

Č2klz (0)
, Pw(0) =

∫ Č2klz (λ)

Č2klz (0)
e−iw·λ

[
2 − 1 − e−2βČ0(λ)

2βČ0(λ)

]
dλ,

which shows that the enhancement factor for large β is 2.
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5 The Weak Backscattering Regime when α � 1

We consider here the regime of large Fresnel number. That is, we analyze the system for D in
the regime α � 1. This regime can be interpreted as a high frequency situation, respectively,
a regime of large transversal correlation radius. We first give the asymptotic behavior of the
cross spectral density in the regime α � 1.

Lemma 3 We have limα→0 D(ζ,u,v,w) = D(0)(ζ,w) with

D(0)(ζ,w) =
∫ Č2klz (λ)

Č2klz (0)
e−iw·λ 1 − e−4ζβ(Č0(0)−Č0(λ))

4β(Č0(0) − Č0(λ))
dλ. (60)

If Č2klz (λ) and Č0(λ) are twice differentiable in λ, then we have D(ζ,u,v,w) = D(0)(ζ,w)+
iαu · vD(1)(ζ,w) + O(α2) with

D(1)(ζ,w) =
∫ Č2klz (λ)

Č2klz (0)
e−iw·λ e−4ζβ(Č0(0)−Č0(λ)) − 1 + 4ζβ(Č0(0) − Č0(λ))

[4β(Č0(0) − Č0(λ))]2
dλ. (61)

In the following we give the expansions of the beam width, spectral width, and mean
reflected power profile for small α. We will assume that Č0 and Č2klz are twice differentiable
at 0.

5.1 Beam Width

We consider the rms width of the reflected beam Rε defined by (43). From the expression
(44) of the limit R = limε→0 Rε it follows using the expressions for D(0) and D(1) that

R2 α�1� R2
0 + 2Q0l

2
xα + O(α2).

The only noticeable effect is the convergence or divergence due to the initial phase front
of the beam characterized by Q0 given by (47). Random scattering plays no role here, and
diffraction is not yet noticeable either (they both arise at order α2).

5.2 Spectral Width

The spectral width is defined by (49) and it converges to K given by (50) as ε → 0. In the
regime α � 1 we obtain

K2 α�1� K2
0 − 2�Č0(0)l−2

x

β

(2π)d
− �Č2klz (0)

Č2klz (0)
l−2
x + O(α2).

By comparing with (51) we can see that the small and large α limits of the spectral spreading
almost coincide, up to a factor 2 in the term due to random forward scattering (the one with
�Č0(0)). These results show that random scattering has a strong effect of order one on the
spectral width in the regime α � 1, but this has little influence (or order α2) on the beam
width. This remark will be confirmed by the study of the mean reflected power.
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5.3 Mean Reflected Power

Recall that in the limit ε → 0, the mean reflected power is given by (53). In the regime
α � 1 we have then

I(y)
α�1� D̄l−3d

x

23dπ2d

∫ ∫ ∫
b̂

(
v + u − w

2lx

)
b̂

(
v − u − w

2lx

)
eiu·y

× {D(0)(1,w) + iαu · v[D(1)(1,w) −D(0)(1,w)] + O(α2)}dudvdw,

and find

I(y)
α�1� ldx

P
[|b̌(lxy)|2 − αl2

x Im(b̌�b̌(lxy)) + O(α2)].
Once again, the only noticeable effect is the convergence or divergence due to the initial
phase front of the beam.

6 Generalized Transport Equations in Transmission

In this section we characterize the spectrum of the transmitted wave. This characterization
is a generalization of the results in the reflection case presented in Sect. 3.1 and leads to
modified transport equations for the cross moments of reflection and transmission coeffi-
cients. In Sect. 6.1 we present a dimensionless form of this system in the regime of weak
backscattering. In Sect. 6.2 we give an application by computing the spatial power profile of
the transmitted wave. First we state the main theoretical result that is proved in Appendix B:

Proposition 8 Using the same notations as in Proposition 1 we introduce the moments
of products of R̂

ε
(k, z,κ,κ ′), the reflection operator, and T̂

ε
(k, z,κ,κ ′), the transmission

operator, at two nearby frequencies:

U (κ ′
a ,κ ′

b
),ε

p,q (k,h, z;κa,κb)

= E

[
np∏

j=1

R̂
ε
(

k + ε2h

2
, z,κp(j),κ ′

p(j)

)

×
nq∏
l=1

R̂
ε
(

k − ε2h

2
, z,κq(l),κ

′
q(l)

)
T̂

ε
(

k + ε2h

2
, z,κa,κ

′
a

)

× T̂
ε
(

k − ε2h

2
, z,κb,κ

′
b

)]
. (62)

The family of Fourier transforms

W
(κ ′

a ,κ ′
b
),ε

p,q (k, τ, z) = 1

2π

∫
e−ih[τ−(np+nq+1)z]U (κ ′

a ,κ ′
b
),ε

p,q (k,h, z)dh, (63)

converges as ε → 0 to the solution W
(κ ′

a ,κ ′
b
)

p,q of the system of transport equations

∂W
(κ ′

a ,κ ′
b
)

p,q

∂z
+ (np + nq + 1)

∂W
(κ ′

a ,κ ′
b
)

p,q

∂τ
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= i

2k
Φ

(κ ′
a ,κ ′

b
)

p,q W
(κ ′

a ,κ ′
b
)

p,q + k2

4(2π)d
(LT

WW)
(κ ′

a ,κ ′
b
)

p,q (64)

with the initial conditions:

W
(κ ′

a ,κ ′
b
)

p,q (k, τ, z = 0;κa,κb) = 10(np)10(nq)δ(κ
′
a − κa)δ(κ

′
b − κb)δ(τ ).

Here we have defined

Φ
(κ ′

a ,κ ′
b
)

p,q = Φp,q − |κ ′
a|2 + |κ ′

b|2, (65)

(LT
WW)

(κ ′
a ,κ ′

b
)

p,q

= (LWW(κ ′
a ,κ ′

b
))p,q +

∫
Ĉ(0,κ)(W

(κ ′
a+κ,κ ′

b
+κ)

p,q − W
(κ ′

a ,κ ′
b
)

p,q )dκ

+
np∑

j=1

∫
Ĉ(0,κ)(−W

(κ ′
a+κ,κ ′

b
)

p|{j |(κp(j)+κ,κ ′
p(j))},q − W

(κ ′
a+κ,κ ′

b
)

p|{j |(κp(j),κ ′
p(j)−κ)},q

+ W
(κ ′

a ,κ ′
b
+κ)

p|{j |(κp(j)−κ,κ ′
p(j))},q + W

(κ ′
a ,κ ′

b
+κ)

p|{j |(κp(j),κ ′
p(j)+κ)},q)dκ

+
nq∑
l=1

∫
Ĉ(0,κ)(W

(κ ′
a+κ,κ ′

b
)

p,q|{l|(κq (l)−κ,κ ′
q (l))} + W

(κ ′
a+κ,κ ′

b
)

p,q|{l|(κq (l),κ ′
q (l)+κ)}

− W
(κ ′

a ,κ ′
b
+κ)

p,q|{l|(κq (l)+κ,κ ′
q (l))} − W

(κ ′
a ,κ ′

b
+κ)

p,q|{l|(κq (l),κ ′
q (l)−κ)})dκ

−
np∑

j=1

Ĉ(2k,κp(j) − κ ′
p(j))

∫
W

(κ+κ ′
p(j),κ ′

b
)

p|{j |(κ+κp(j),κ ′
a)},qdκ

−
nq∑
l=1

Ĉ(2k,κq(l) − κ ′
q(l))

∫
W

(κ ′
a ,κ+κ ′

q (l))

p,q|{l|(κ+κq (l),κ ′
b
)}dκ

−
∫

Ĉ(2k,κ)dκW
(κ ′

a ,κ ′
b
)

p,q +
∫ ∫ ∫

Ĉ(2k,κ1)W
(κ1+κ2,κ1+κ3)

p∪(κ2,κ ′
a),q∪(κ3,κ ′

b
)
dκ1dκ2dκ3

+
np∑

j=1

∫ ∫ ∫
Ĉ(2k,κ1)W

(κ ′
a ,κ1+κ2)

p|{j |(κp(j),κ1+κ3),(κ3,κ ′
p(j))},q∪(κ2,κ ′

b
)
dκ1dκ2dκ3

+
nq∑
l=1

∫ ∫ ∫
Ĉ(2k,κ1)W

(κ1+κ2,κ ′
b
)

p∪(κ2,κ ′
a),q|{l|(κq (l),κ1+κ3),(κ3,κ ′

q (l))}dκ1dκ2dκ3.

This set of transport equations describes accurately the transmitted wave field and it is the
key tool to analyze various applications for waves in random media. The corresponding
transport equations in the layered case are presented in [8].

6.1 The Transmission System in the Weak Backscattering Regime

We are again interested in the weak backscattering regime introduced in Sect. 3.2. When we
take into account terms of order zero and one (in δ) in the weak backscattering regime, we
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obtain:

∂W
(κ ′

0,κ ′
1)

∅,∅
∂z

+ ∂W
(κ ′

0,κ ′
1)

∅,∅
∂τ

= i

2k
(|κ ′

1|2 − |κ ′
0|2)W(κ ′

0,κ ′
1)

∅,∅ − k2Č(2k,0)

4
W

(κ ′
0,κ ′

1)

∅,∅

+ k2

4(2π)d

∫
Ĉ(0,κ)(W

(κ ′
0+κ,κ ′

1+κ)

∅,∅ − W
(κ ′

0,κ ′
1)

∅,∅ )dκ, (66)

with W
(κ ′

0,κ ′
1)

∅,∅ (k, τ, z = 0;κ0,κ1) = δ(τ )δ(κ0 − κ ′
0)δ(κ1 − κ ′

1). Note that W
(κ ′

0,κ ′
1)

∅,∅ will be
supported on κ0 − κ ′

0 − κ1 + κ ′
1 = 0 so that we again can parameterize the solution in

terms of three “effective” wavevectors as in the analysis of the cross spectral density of the
reflected wave. By integrating the system (66) in τ we obtain the following convergence
result.

Proposition 9 We have as ε → 0

E[T̂ ε
(k, z,κ ′

0 + κ,κ ′
0)T̂

ε
(k, z,κ ′

1 + κ ′,κ ′
1)] ε→0−→ δ(κ ′ − κ)DT

κ ′
0,κ ′

1,κ
(z), (67)

where the cross spectral density DT is of the form

DT
κ ′

0,κ ′
1,κ

(z) = ldxD
T

(
z

L
, (κ ′

0 − κ ′
1)lx, (κ

′
0 + κ ′

1 + κ)lx,κ lx

)

× exp

[
i(|κ ′

1|2 − |κ ′
0|2)

z

2k

]
exp

(
−k2σ 2lzČ2klz (0)

4
z

)
, (68)

and the dimensionless cross spectral density DT (ζ,u,v,w) is solution of

dDT (ζ,u,v,w)

dζ
= β

(2π)d

∫
Ĉ0(μ)[eiαμ·uζDT (ζ,u,v − μ,w + μ) −DT (ζ,u,v,w)]dμ,

starting from DT (ζ = 0,u,v,w) = δ(w).

It is remarkable that the first-order correction due to weak backscattering is a simple
frequency-dependent attenuation in (68). The density DT takes a simple form in the regime
α � 1.

Lemma 4

1. If u 	= 0, then limα→∞ DT (ζ,u,v,w) = e−βČ0(0)ζ δ(w).
2. limα→∞ DT (ζ,α−1s,v,w) = DT

s (ζ,w) where DT
s (ζ,w) is solution of

dDT
s (ζ,w)

dζ
= β

(2π)d

∫
Ĉ0(μ)[eiμ·sζDT

s (ζ,w + μ) −DT
s (ζ,w)]dμ,

starting from DT
s (ζ = 0,w) = δ(w).
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It is possible to obtain an integral representation for DT
s :

DT
s (ζ,w) = 1

(2π)d

∫
e−iw·λeβ

∫ ζ
0 Č0(λ−ζ ′s)−Č0(0)dζ ′

dλ. (69)

6.2 The Transmitted Power Profile in the Weak Backscattering Regime

The results of the previous subsection allow us to address various physically relevant prob-
lems. For instance, we can compute the mean power profile of the transmitted wave. In the
limit ε → 0, the mean transmitted power I T (x) = limε→0 E[|b̌ε(0,x)|2] is given by

I T (x) = 1

(2π)2d

∫ ∫ ∫
b̂(κ ′

0)b̂(κ ′
1)e

i(κ ′
0−κ ′

1)·xDT
κ ′

0,κ ′
1,κ

(L)dκdκ ′
0dκ ′

1.

Using the dimensionless cross spectral density DT this can also be written as

I T (x) = P T

ldx
IT

(
x
lx

)
,

where P T (respectively P0) is the total mean transmitted power (respectively total incoming
power) given by

P T = P0 exp

(
−k2σ 2lzČ2klz (0)

4
L

)
, P0 =

∫
|b̌(x)|2dx,

and the dimensionless transmitted power profile is

IT (y) = l−d
x

23dπ2dP0

∫ ∫ ∫
b̂

(
v + u − w

2lx

)
b̂

(
v − u − w

2lx

)
eiu·y

×DT (1,u,v,w)e− i
2 αu·(v−w)dudvdw.

In the regime α � 1 we find by using Lemma 4 that

lim
α→∞ αdIT (αy) = l−d

x

(2π)2dP0

∫ ∫ ∫
DT

s (w)eis·(y−v)

∣∣∣∣b̂
(

v
lx

)∣∣∣∣
2

dsdvdw.

Substituting the expression (69) of DT
s (w), we obtain

lim
α→∞αdIT (αy) = l−d

x

(2π)2dP0

∫ ∫
eis·(y−v)

∣∣∣∣b̂
(

v
lx

)∣∣∣∣
2

eβ
∫ 1

0 Č0(ζ s)−Č0(0)dζ dsdv.

If β � 1, meaning that random forward scattering is weak, then

lim
β→0

lim
α→∞ αdIT (αy) = l−d

x

(2π)dP0

∣∣∣∣b̂
(

y
lx

)∣∣∣∣
2

,

which is the standard formula that can be obtained by a stationary phase argument applied
on the expression of the transmitted power in a homogeneous medium:

IT (αy) |homo= l−d
x

(2π)2dP0

∣∣∣∣
∫

b̂

(
v
lx

)
eiα(v·y− |v|2

2 )dv

∣∣∣∣
2

.
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The asymptotic regime β � 1 corresponds to strong forward scattering. The analysis of
this regime requires us to distinguish the cases in which Č0(s) is smooth at 0 or not.

Let us first consider the case in which Č0(s) is twice differentiable at 0 and can be ex-
panded as Č0(s) � Č0(0) − 1

2 Č
′′
0 |s|2 + o(|s|2), with Č′′

0 > 0. We obtain that the transmitted
wave has a Gaussian profile

lim
β→∞ lim

α→∞αdβd/2I(αβ1/2y) = 1

[Č′′
0 ]d/2

Q
(

y

[Č′′
0 ]1/2

)
, Q(y) = 3d/2

(2π)d/2
e− 3|y|2

2 .

The profile Q is such that
∫
Q(y)dy = 1. The beam width is therefore of the order of αβ1/2lx ,

which shows that it is proportional to L3/2 in the physical variables. This L3/2-scaling was
first obtained in the physical literature in Ref. [7] and confirmed mathematically in Ref. [6].

Let us now consider the case in which Č0(s) is not smooth at 0 and has the form Č0(s) =
Č0(0) − Č′

0|s| + o(|s|), with Č′
0 > 0. We find that

lim
β→∞ lim

α→∞αdβdI(αβy) = 1

[Č′
0]d

Q
(

y

Č′
0

)
, Q(y) = 2d

dπ

1

(1 + 4|y|2) d+1
2

.

The profile Q is such that
∫
Q(y)dy = 1. Therefore, if the random medium is rough, then

the transmitted beam has a large width, of the order of αβlx (proportional to L2), and it has
a heavy tail decaying as |y|−1−d . These results are in agreement with those reported in [6],
and they can be contrasted with the ones obtained in the case of a smooth random medium.
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Appendix A: Derivation of Generalized Transport Equations

We introduce the family of products of R̂
ε
:

Uε
p,q(k,h, z) =

np∏
j=1

R̂
ε
(

k + ε2h

2
, z,κp(j),κ ′

p(j)

) nq∏
l=1

R̂
ε
(

k − ε2h

2
, z,κq(l),κ

′
q(l)

)
.

It now follows from (18) that Uε
p,q satisfies an evolution equation of the form

∂Uε
p,q

∂z
= Hε(Uε)p,q, (70)

with the initial conditions Uε
p,q(k, τ, z = 0) = 10(np)10(nq). Here Hε(Uε)p,q is a fi-

nite sum of integral operators acting on Uε

p(1),q(1) , . . . ,U
ε

p(m),q(m) where the index sets

p(1),q(1), . . . ,p(m),q(m) are obtained from p and q by one or two replacements. We have
explicitly

Hε(Uε)p,q(k,h, z)

= e−i(2kz/ε2+hz)

np∑
j=1

Uε
p|j,qL̂

ε

(
k + ε2h

2
, z,κp(j),κ ′

p(j)

)
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+ ei(2kz/ε2+hz)

np∑
j=1

∫ ∫
Uε

p|{j |(κp(j),κ1),(κ2,κ ′
p(j))},q

× L̂ε

(
k + ε2h

2
, z,κ1,κ2

)
dκ1dκ2

+
np∑

j=1

∫ {
Uε

p|{j |(κ1,κ ′
p(j))},qL̂

ε

(
k + ε2h

2
, z,κp(j),κ1

)

+ Uε
p|{j |(κp(j),κ1)},qL̂

ε

(
k + ε2h

2
, z,κ1,κ

′
p(j)

)}
dκ1

+ ei(2kz/ε2−hz)

nq∑
l=1

Uε
p,q|lL̂ε

(
k − ε2h

2
, z,κq(l),κ

′
q(l)

)

+ e−i(2kz/ε2−hz)

nq∑
l=1

∫ ∫
Uε

p,q|{l|(κq (l),κ1),(κ2,κ ′
q (l))}

× L̂ε

(
k − ε2h

2
, z,κ1,κ2

)
dκ1dκ2

+
nq∑
l=1

∫ {
Uε

p,q|{l|(κ1,κ ′
q (l))}L̂ε

(
k − ε2h

2
, z,κq(l),κ1

)

+ Uε
p,q|{l|(κq (l),κ1)}L̂ε

(
k − ε2h

2
, z,κ1,κ

′
q(l)

)}
dκ1. (71)

A.1 The Homogeneous Propagator Equations

In order to eliminate the h-dependence in the coefficients of (71) we introduce the Fourier
transform V ε

p,q(k, τ, z) of Uε
p,q(k,h, z) defined by

V ε
p,q(k, τ, z) = 1

2π

∫
e−ih(τ−(np+nq)z)Uε

p,q(k, τ, z)dh, (72)

and observe that

L̂ε

(
k ± ε2h

2
, z,κ1,κ2

)
� L̂ε(k, z,κ1,κ2),

as ε → 0. We then find to leading order

∂V ε
p,q

∂z
+ (np + nq)

∂V ε
p,q

∂τ
= Hε

V (V ε)p,q, (73)

with the initial conditions V ε
p,q(k, τ, z = 0) = 10(np)10(nq)δ(τ ). Here Hε

V (V ε)p,q is a
finite sum of integral operators acting on V ε

p(1),q(1) , . . . , V
ε

p(m),q(m) where the index sets

p(1),q(1), . . . ,p(m),q(m) are obtained from p and q by one or two replacements. We have
explicitly
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Hε
V (V ε)p,q(z, k, τ )

= e−i2kz/ε2
np∑

j=1

V ε
p|j,qL̂

ε(k, z,κp(j),κ ′
p(j))

+ ei2kz/ε2
np∑

j=1

∫ ∫
V ε

p|{j |(κp(j),κ1),(κ2,κ ′
p(j))},qL̂

ε(k, z,κ1,κ2)dκ1dκ2

+
np∑

j=1

∫
{V ε

p|{j |(κ1,κ ′
p(j))},qL̂

ε(k, z,κp(j),κ1)

+ V ε
p|{j |(κp(j),κ1)},qL̂

ε(k, z,κ1,κ
′
p(j))}dκ1

+ ei2kz/ε2
nq∑
l=1

V ε
p,q|lL̂ε(k, z,κq(l),κ

′
q(l))

+ e−i2kz/ε2
nq∑
l=1

∫ ∫
V ε

p,q|{l|(κq (l),κ1),(κ2,κ ′
q (l))}L̂ε(k, z,κ1,κ2)dκ1dκ2

+
nq∑
l=1

∫
{V ε

p,q|{l|(κ1,κ ′
q (l))}L̂ε(k, z,κq(l),κ1)

+ V ε
p,q|{l|(κq (l),κ1)}L̂ε(k, z,κ1,κ

′
q(l))}dκ1. (74)

A.2 Transport Equations

We next apply the diffusion approximation to get transport equations for the moments (see
[8] for background material on and related applications of the diffusion approximation).
Observe that the function Hε

V is linear and the random coefficients are rapidly fluctuating
in view of (19) and (18). The coefficients of order ε−1 are centered and fluctuate on the
scale ε2, moreover they are assumed to be rapidly mixing, giving a white-noise scaling
situation. We can thus apply diffusion approximation results to obtain transport equations
for the moments E[V ε

p,q] in the limit ε → 0:

Wp,q(k, τ, z) = lim
ε→0

E[V ε
p,q(k, τ, z)].

We then obtain from (73) that Wp,q solves the infinite-dimensional system of partial differ-
ential equations

∂Wp,q

∂z
+ (np + nq)

∂Wp,q

∂τ
= i

2k
Φp,qWp,q +HW(W)p,q, (75)

with the initial conditions Wp,q(k, τ, z = 0) = 10(np)10(nq)δ(τ ) and Φp,q defined by (28).
The first term to the right in (75) is the contributions of the scattering terms in (19). The
source term has the form

HW(W)p,q =
6∑

k=1

Ik, (76)

and we next identify the coupling terms Ik . We remark that in applying the diffu-
sion approximation there is coupling only between terms whose rapid phase modulations
exp[±2ikz/ε2] compensate each other.
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There are 8 terms in the expression for Hε
V in (74), we label the first four terms associated

with the index set p by 1p, . . . ,4p . The last four terms associated with the index set q, are
labeled by 1q , . . . ,4q . First, we consider the cross interaction of the terms 1p and 2p and
also the corresponding combination 1q and 2q that is associated with complex conjugate
coefficients. We label their contribution by the term I1 which is given by

I1 = − k2

4(2π)d

{
np

∫
Ĉ+(2k,κ)dκWp,q +

np∑
j1 	=j2=1

Ĉ(2k,κp(j1) − κ ′
p(j1))

×
∫

Wp|{j1,j2|(κp(j2),κ−κp(j1)),(κ−κ ′
p(j1),κ ′

p(j2))},qdκ

+ nq

∫
Ĉ−(2k,κ)dκWp,q +

nq∑
l1 	=l2=1

Ĉ(2k,κq(l1) − κ ′
q(l1))

×
∫

Wp,q|{l1,l2|(κq (l2),κ−κq (l1)),(κ−κ ′
q (l1),κ ′

q (l2))}dκ

}
,

where the autocorrelation function of the fluctuations and its Fourier transform are defined
by (23-25). Next, we consider the cross interaction of the terms 1p and 2p with the terms 1q

and 2q . We label their contribution by the term I2 which is given by

I2 = k2

4(2π)d

{
np∑

j=1

nq∑
l=1

Ĉ(2k,κp(j) − κ ′
p(j))δ(κp(j) − κ ′

p(j) − κq(l) + κ ′
q(l))Wp|j,q|l

+
np∑

j=1

nq∑
l=1

∫ ∫ ∫
Ĉ(2k,κ1)

× Wp|{j |(κp(j),κ2),(κ2−κ1,κ ′
p(j))},q|{l|(κq (l),κ3),(κ3−κ1,κ ′

q (l))}dκ1dκ2dκ3

}
.

We have completed the analysis of the terms associated with phase modulation of the
form exp[±2ikz/ε2] and consider now the terms without a fast phase modulation. Consider
first the interaction of the terms 3p , 4p 3q and 4q with themselves. We label this contribution
by I3, it is given by

I3 = − k2

4(2π)d

{
np

∫
Ĉ(0,κ)dκWp,q

+ 1

2

np∑
j1 	=j2=1

∫
Ĉ(0,κ)Wp|{j1,j2|(κp(j1)−κ,κ ′

p(j1)),(κp(j2)+κ,κ ′
p(j2))},qdκ

+ 1

2

np∑
j1 	=j2=1

∫
Ĉ(0,κ)Wp|{j1,j2|(κp(j1),κ ′

p(j1)−κ),(κp(j2),κ ′
p(j2)+κ)},qdκ

+ nq

∫
Ĉ(0,κ)dκWp,q



478 J. Garnier, K. Sølna

+ 1

2

nq∑
l1 	=l2=1

∫
Ĉ(0,κ)Wp,q|{l1,l2|(κq (l1)−κ,κ ′

q (l1)),(κq (l2)+κ,κ ′
q (l2))}dκ

+ 1

2

nq∑
l1 	=l2=1

∫
Ĉ(0,κ)Wp,q|{l1,l2|(κq (l1),κ ′

q (l1)−κ),(κq (l2),κ ′
q (l2)+κ)}dκ

}
.

Next, we deal with the cross interaction between the terms 3p , 4p and correspondingly
between 3q and 4q . We label this contribution by I4 and obtain

I4 = − k2

4(2π)d

{
np∑

j=1

∫
Ĉ(0,κ)Wp|{j |(κp(j)−κ,κ ′

p(j)−κ)},qdκ

+
np∑

j1 	=j2=1

∫
Ĉ(0,κ)Wp|{j1,j2|(κp(j1)−κ,κ ′

p(j1)),(κp(j2),κ ′
p(j2)−κ)},qdκ

+
nq∑
l=1

∫
Ĉ(0,κ)Wp,q|{l|(κq (l)−κ,κ ′

q (l)−κ)}dκ

+
nq∑

l1 	=l2=1

∫
Ĉ(0,κ)Wp,q|{l1,l2|(κq (l1)−κ,κ ′

q (l1)),(κq (l2),κ ′
q (l2)−κ)}dκ

}
.

Now we consider the cross interaction between the terms 3p , 3q and correspondingly
between 4p and 4q . We label this contribution by I5 and obtain

I5 = k2

4(2π)d

{
np∑

j=1

nq∑
l=1

∫
Ĉ(0,κ)Wp|{j |(κp(j)−κ,κ ′

p(j))},q|{l|(κql (l)−κ,κ ′
q (l))}dκ

+
np∑

j=1

nq∑
l=1

∫
Ĉ(0,κ)Wp|{j |(κp(j),κ ′

p(j)−κ)},q|{l|(κq (l),κ ′
q (l)−κ)}dκ

}
.

Finally, we analyze the cross interaction between the terms 3p , 4q and correspondingly
between 4p and 3q . We label this contribution by I6 and obtain

I6 = k2

4(2π)d

{
np∑

j=1

nq∑
l=1

∫
Ĉ(0,κ)Wp|{j |(κp(j)−κ,κ ′

p(j)),q|{l|(κq (l),κ ′
q (l)+κ)dκ

+
np∑

j=1

nq∑
l=1

∫
Ĉ(0,κ)Wp|{j |(κp(j),κ ′

p(j)−κ),q|{l|(κq (l)+κ,κ ′
q (l))dκ

}
.

Finally, we substitute the expressions for I1, . . . , I6 in (76) to obtain the transport equations
(27).

Appendix B: Derivation of Transmission Transport Equations

We consider next the wave field that is transmitted through the random medium and develop
a family of transport equations that generalizes the one we derived above for the character-
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ization of the reflected field. The transmitted field can be characterized by the transmission
operator as shown in (16) and the transmission and reflection operators solve (18). In order
to obtain a closed system of transport equations we introduce the quantities

U
(κ ′

a ,κ ′
b
),ε

p,q (k,h, z;κa,κb) = T̂
ε
(

k + ε2h

2
, z,κa,κ

′
a

)
T̂

ε
(

k − ε2h

2
, z,κb,κ

′
b

)
Uε

p,q(k,h, z).

Then we find, using (70),

∂U
(κ ′

a ,κ ′
b
),ε

p,q

∂z

= Hε(U(κ ′
a ,κ ′

b
),ε)p,q + Uε

p,qT̂
ε
(

k − ε2h

2
, z,κb,κ

′
b

)

×
{∫

T̂
ε
(

k + ε2h

2
, z,κa,κ1

)
L̂ε

(
k + ε2h

2
, z,κ1,κ

′
a

)
dκ1 + ei(2kz/ε2+hz)

×
∫ ∫

T̂
ε
(

k + ε2h

2
, z,κa,κ1

)
L̂ε

(
k + ε2h

2
, z,κ1,κ2

)

× R̂
ε
(

k + ε2h

2
, z,κ2,κ

′
a

)
dκ1dκ2

}

+ Uε
p,qT̂

ε
(

k + ε2h

2
, z,κa,κ

′
a

){∫
T̂

ε
(

k − ε2h

2
, z,κb,κ1

)

× L̂ε

(
k − ε2h

2
, z,κ1,κ

′
b

)
dκ1

+ e−i(2kz/ε2−hz)

∫ ∫
T̂

ε
(

k − ε2h

2
, z,κb,κ1

)
L̂ε

(
k − ε2h

2
, z,κ1,κ2

)

× R̂
ε
(

k − ε2h

2
, z,κ2,κ

′
b

)
dκ1dκ2

}
,

with Hε defined in (71). We remark that the family of coefficients U
(κ ′

a ,κ ′
b
),ε

p,q (k,h, z;κa,κb)

for fixed κa and κb form a closed sub-family, which allows us to rewrite the previous system
as

∂U
(κ ′

a ,κ ′
b
),ε

p,q

∂z
= Hε(U(κ ′

a ,κ ′
b
),ε)p,q + �1Hε(Uε)

(κ ′
a ,κ ′

b
)

p,q + �2Hε(Uε)
(κ ′

a ,κ ′
b
)

p,q , (77)

for

�1Hε(Uε)
(κ ′

a ,κ ′
b
)

p,q

=
∫

L̂ε

(
k + ε2h

2
, z,κ1,κ

′
a

)
U

(κ1,κ ′
b
),ε

p,q dκ1

+
∫

L̂ε

(
k − ε2h

2
, z,κ1,κ

′
b

)
U

(κ ′
a ,κ1),ε

p,q dκ1,



480 J. Garnier, K. Sølna

�2Hε(Uε)
(κ ′

a ,κ ′
b
)

p,q ,

= ei(2kz/ε2+hz)

∫ ∫
R̂

ε
(

k + ε2h

2
, z,κ2,κ

′
a

)

× L̂ε

(
k + ε2h

2
, z,κ1,κ2

)
U

(κ1,κ ′
b
),ε

p,q dκ1dκ2

+ e−i(2kz/ε2−hz)

∫ ∫
R̂

ε
(

k − ε2h

2
, z,κ2,κ

′
b

)

× L̂ε

(
k − ε2h

2
, z,κ1,κ2

)
U

(κ ′
a ,κ1),ε

p,q dκ1dκ2.

B.1 Homogeneous Propagator Equations in the Transmission Case

In order to eliminate the h-dependence in the coefficients of (77) we introduce the transfor-
mation

V
(κ ′

a ,κ ′
b
),ε

p,q (k, τ, z) = 1

2π

∫
e−ih(τ−(np+nq+1)z)U

(κ ′
a ,κ ′

b
),ε

p,q (k,h, z)dh. (78)

We then obtain from (77) that V (κ ′
a ,κ ′

b
),ε solves the infinite-dimensional system of partial

differential equations

∂V
(κ ′

a ,κ ′
b
),ε

p,q

∂z
+ (np + nq + 1)

∂V
(κ ′

a ,κ ′
b
),ε

p,q

∂τ
= H̃ε

V (V ε)
(κ ′

a ,κ ′
b
)

p,q , (79)

with the initial conditions V
(κ ′

a ,κ ′
b
),ε

p,q (k, τ, z = 0;κa,κb) = 10(np)10(nq)δ(κa − κ ′
a)δ(κb −

κ ′
b)δ(τ ). We decompose the source term as

H̃ε
V = Hε

V + �1Hε
V + �2Hε

V , (80)

with Hε
V defined in (74) and where the transmission specific source terms are

�1Hε
V (V ε)

(κ ′
a ,κ ′

b
)

p,q =
∫

L̂ε(k, z,κ1,κ
′
a)V

(κ1,κ ′
b
),ε

p,q dκ1

+
∫

L̂ε(k, z,κ1,κ
′
b)V

(κ ′
a ,κ1),ε

p,q dκ1, (81)

�2Hε
V (V ε)

(κ ′
a ,κ ′

b
)

p,q = ei2kz/ε2
∫ ∫

L̂ε(k, z,κ1,κ2)V
(κ1,κ ′

b
),ε

p∪(κ2,κ ′
a),qdκ1dκ2

+ e−i2kz/ε2
∫ ∫

L̂ε(k, z,κ1,κ2)V
(κ ′

a ,κ1),ε

p,q∪(κ2,κ ′
b
)
dκ1dκ2. (82)

B.2 Transport Equations

We now apply the diffusion approximation to get transport equations for the moments that
are relevant in the transmission case. That is, we deduce transport equations for the moments

E[V (κ ′
a ,κ ′

b
),ε

p,q ] in the limit ε → 0:

W
(κ ′

a ,κ ′
b
)

p,q (k, τ, z;κa,κb) = lim
ε→0

E[V (κ ′
a ,κ ′

b
),ε

p,q (k, τ, z;κa,κb).
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We obtain from (79) that W
(κ ′

a ,κ ′
b
)

p,q solves the infinite-dimensional system of partial differen-
tial equations

∂W
(κ ′

a ,κ ′
b
)

p,q

∂z
+ (np + nq + 1)

∂W
(κ ′

a ,κ ′
b
)

p,q

∂τ

= i

2k
Φ

(κ ′
a ,κ ′

b
)

p,q W
(κ ′

a ,κ ′
b
)

p,q +HW(W(κ ′
a ,κ ′

b
))p,q + �HW(W)

(κ ′
a ,κ ′

b
)

p,q , (83)

with the initial conditions W
(κ ′

a ,κ ′
b
)

p,q (k, τ, z = 0;κa,κb) = 10(np)10(nq)δ(κa − κ ′
a)δ(κb −

κ ′
b)δ(τ ). Here Φ

(κ ′
a ,κ ′

b
)

p,q is defined by (65), the source term HW is defined in (76) and the
specific transmission source term has the form

�HW(W)
(κ ′

a ,κ ′
b
)

p,q =
4∑

k=1

Ĩk, (84)

and we next identify the coupling terms Ĩk .
First, we consider the terms that correspond to the interaction of the terms �1Hε

V in (81)
with themselves. This contribution is

Ĩ1 = k2

4(2π)d

{
−

∫
Ĉ(0,κ)dκW

(κ ′
a ,κ ′

b
)

p,q +
∫

Ĉ(0,κ)W
(κ ′

a+κ,κ ′
b
+κ)

p,q dκ

}
.

Then, we consider the cross interaction of the terms in �2Hε
V in (82). This gives the contri-

bution

Ĩ2 = k2

4(2π)d

∫ ∫ ∫
Ĉ(2k,κ1)W

(κ1+κ2,κ1+κ3)

p∪(κ2,κ ′
a),q∪(κ3,κ ′

b
)
dκ1dκ2dκ3.

The terms in �1Hε
V interact with those in Hε

V having no phase modulation and give the
following contribution to the diffusion approximation

Ĩ3 = k2

4(2π)d

{∫
Ĉ(0,κ)

[
np∑

j=1

(−W
(κ ′

a+κ,κ ′
b
)

p|{j |(κp(j)+κ,κ ′
p(j))},q − W

(κ ′
a+κ,κ ′

b
)

p|{j |(κp(j),κ ′
p(j)−κ)},q

+ W
(κ ′

a ,κ ′
b
+κ)

p|{j |(κp(j)−κ,κ ′
p(j))},q + W

(κ ′
a ,κ ′

b
+κ)

p|{j |(κp(j),κ ′
p(j)+κ)},q)

+
nq∑
l=1

(W
(κ ′

a+κ,κ ′
b
)

p,q|{l|(κq (l)−κ,κ ′
q (l))} + W

(κ ′
a+κ,κ ′

b
)

p,q|{l|(κq (l),κ ′
q (l)+κ)}

− W
(κ ′

a ,κ ′
b
+κ)

p,q|{l|(κq (l)+κ,κ ′
q (l))} − W

(κ ′
a ,κ ′

b
+κ)

p,q|{l|(κq (l),κ ′
q (l)−κ)})

]
dκ

}
.

Finally, we consider the cross interaction of the terms in �2Hε
V with those in Hε

V . This
gives the contribution

Ĩ4 = k2

4(2π)d

{
−

np∑
j=1

Ĉ(2k,κp(j) − κ ′
p(j))

∫
W

(κ+κ ′
p(j),κ ′

b
)

p|{j |(κ+κp(j),κ ′
a)},qdκ
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−
nq∑
l=1

Ĉ(2k,κq(l) − κ ′
q(l))

∫
W

(κ ′
a ,κ+κ ′

q (l))

p,q|{l|(κ+κq (l),κ ′
b
)}dκ −

∫
Ĉ(2k,κ)dκW

(κ ′
a ,κ ′

b
)

p,q

+
np∑

j=1

∫ ∫ ∫
Ĉ(2k,κ1)W

(κ ′
a ,κ1+κ2)

p|{j |(κp(j),κ1+κ3),(κ3,κ ′
p(j))},q∪(κ2,κ ′

b
)
dκ1dκ2dκ3

+
nq∑
l=1

∫ ∫ ∫
Ĉ(2k,κ1)W

(κ1+κ2,κ ′
b
)

p∪(κ2,κ ′
a),q|{l|(κq (l),κ1+κ3),(κ3,κ ′

q (l))}dκ1dκ2dκ3

}
.

We can now assemble the terms in the source term �HW for the transport equation, and this
completes the proof of Proposition 8.

Appendix C: Proofs of Technical Lemmas

We first give the proof of Lemma 1. The first item follows from Gronwall’s lemma. For the
proof of the second item, let us consider the set

Aα = {(u,v) ∈ R
2d s.t. |u · v| ≥ α−1/2, |u| ≥ α−1/2, |v| ≥ α−1/2}.

By considering the integral form of the system (36) and the inequality

sup
(u,v)∈Aα

∣∣∣∣
∫ ζ

0
eiαu·vζ ′

dζ ′
∣∣∣∣ = sup

(u,v)∈Aα

∣∣∣∣e
iαu·vζ − 1

αu · v

∣∣∣∣ ≤ 2√
α

,

we obtain the estimate

sup
(u,v)∈Aα,w∈Rd

|D(ζ,u,v,w)|

≤ 2√
α

+ C

∫ ζ

0
sup

(u,v)∈Aα,w∈Rd

|D(ζ ′,u,v,w)|dζ ′

+ C

∫
|Č0(μ)|[1Ac

α
(u + μ,v) + 1Ac

α
(u,v + μ)

+ 1Ac
α
(u + μ,v + μ) + 1Ac

α
(u − μ,v + μ)]dμ.

Using the fact Č0(μ) is integrable and applying the dominated convergence theorem, the last
term of the right-hand side converges to 0 as α → ∞ since the indicator functions converge
to zero almost surely with respect to the Lebesgue measure over R

d . Therefore, applying
Gronwall’s lemma, we get

lim
α→∞ sup

(u,v)∈Aα,w∈Rd ,ζ∈[0,1]
|D(ζ,u,v,w)| = 0.

If we consider a fixed pair (u,v) ∈ R
2d such that u · v 	= 0, then (u,v) ∈ Aα for α large

enough, which proves the second item of the lemma.
We now consider the third point of the lemma. Let us consider a pair (u,v) ∈ R

2d such
that u ·v = 0, u 	= 0, and v 	= 0. In this case, (u−μ) ·v = −μ ·v 	= 0 for almost every μ (with
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respect to the Lebesgue measure over R
d ). Therefore, by using the dominated convergence

theorem and the second item of the lemma, we obtain
∣∣∣∣
∫

Ĉ0(μ)eiαμ·vζD(ζ,u − μ,v,w + μ)dμ

∣∣∣∣ ≤
∫

|Ĉ0(μ)||D(ζ,u − μ,v,w + μ)|dμ
α→∞−→ 0.

Using this estimate, we obtain by taking the limit α → ∞ in (36) that limα→∞ D(ζ,u,v,w)

is the solution of

dD
dζ

= Ĉ2klz (w)

Č2klz (0)
− 2βČ0(0)D,

starting from D(ζ = 0,u,v,w) = 0. Solving this differential equation then gives (39). The
forth point is obtained by the same strategy. The fifth point of the lemma follows from the
reciprocity identity D(ζ,u,v,w) = D(ζ,v,u,w). The proofs of Lemmas 2 and 4 follow the
same lines.

Appendix D: Some Useful Identities in the Regime α � 1

By integrating in w the expression (42) of Ds we find identities that are used in Section 4:

1

(2π)d

∫
D0(ζ,w)dw = ζ, (85)

1

(2π)d

∫
Ds(ζ,v,w)dw =

∫ ζ

0
eiv·s(ζ−ζ ′)e2β

∫ ζ ′
0 Č0(sζ ′′)−Č0(0)dζ ′′

dζ ′. (86)

Moreover, if Č0 and Č2klz are twice differentiable at 0, then we get

1

(2π)d

∫
|w|2D0(ζ,w)dw = −�Č2klz (0)

Č2klz (0)
ζ − β�Č0(0)ζ 2, (87)

1

(2π)d

∫
∇sDs(ζ,v,w) |s=0 dw = i

2
vζ 2, (88)

1

(2π)d

∫
�sDs(ζ,v,w) |s=0 dw = −1

3
|v|2ζ 3 + β

6
�Č0(0)ζ 4, (89)

1

(2π)d

∫
�sDs(ζ,v + w,w) |s=0 dw = 1

3

(
�Č2klz (0)

Č2klz (0)
− |v|2

)
ζ 3 + β

3
�Č0(0)ζ 4. (90)

If Čk(·) is not twice differentiable, then the four integrals (87–90) diverge.

Appendix E: Interpretation of the Weak Backscattering Regime in Terms of
a Random Mirror

The purpose of this short section is to give an elementary picture of the weak backscattering
regime. We first consider the situation in which a wave is incoming from the right half-
space (L,∞) and impinges on a slab of random medium [LM,L], with LM ∈ [0,L]. In the
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plane z = LM an inhomogeneous mirror is inserted, with the impedance Z(x), so that the
boundary condition at z = LM reads

ǎε(k,LM,x) = R(x)b̌ε(k,LM,x)e
−2ik

LM

ε2 ,

where R(x) = (Z(x) − 1)/(Z(x) + 1) is the reflection coefficient of the mirror. If R(x) =
−1, then we deal with the standard reflecting boundary condition p̂ε |z=LM

= 0. If R(x) 	=
−1, then we deal with the generalized reflection condition ∂p̂ε

∂z
+ ik 1−R

1+R
p̂ε |z=LM

= 0. In the
following, we consider the case of a random mirror in which R(x) is a zero-mean random
stationary process with the autocorrelation function ψ(x) = E[R(x′ + x)R(x′)].

In the forward-scattering approximation, the Fourier transform âε(k,L,κ) of the re-
flected wave ǎε(k,L,x) is given by

âε(k,L,κ) =
∫

R̂
ε

LM
(k,L,κ,κ ′)b̂(k,κ ′)dκ ′,

where b̂ is the Fourier transform of the input beam and R̂
ε

LM
is the solution of

d

dz
R̂

ε

LM
(k, z,κ,κ ′) =

∫
L̂ε(k, z,κ,κ1)R̂

ε

LM
(k, z,κ1,κ

′)

+ R̂
ε

LM
(k, z,κ,κ1)L̂ε(k, z,κ1,κ

′)dκ1, z ∈ [LM,L],

starting from R̂
ε

LM
(k, z = LM,κ,κ ′) = R̂(κ − κ ′)e−2ikLM/ε2

. Using a diffusion approxima-
tion theorem, we obtain that

1

2π

∫
E

[
R̂

ε

LM

(
k + ε2h

2
, z,κ0,κ

′
0

)
R̂

ε

LM

(
k − ε2h

2
, z,κ1,κ

′
1

)]
e−ih(τ−2z)dh

ε→0−→ W
LM

(κ0,κ ′
0),(κ1,κ ′

1)
(k, τ, z),

where W
LM

(κ0,κ ′
0),(κ1,κ ′

1)
solves the system (33) in z ∈ [LM,L] without the last source term (the

one with Ĉ(2k, ·)), but with the non-zero initial condition

W
LM

(κ0,κ ′
0),(κ1,κ ′

1)
(k, τ, z = LM) = (2π)dψ̂(κ0 − κ ′

0)δ(τ )δ(κ0 − κ ′
0 − κ1 + κ ′

1).

Here, we have used the fact that E[R̂(κ)R̂(κ ′)] = (2π)dψ̂(κ)δ(κ − κ ′). By Duhamel’s prin-
ciple, it is possible to express the solution W(κ0,κ ′

0),(κ1,κ ′
1) of the system (33) in the weak

backscattering regime as the superposition of solutions W
LM

(κ0,κ ′
0),(κ1,κ ′

1)
of the systems in the

presence of random mirrors at LM , if we choose the impedance of the random mirror such
that

ψ̂(κ) = k2

4(2π)2d
Ĉ(2k,κ),

and if we average out over the mirror position LM between 0 and L:

W(κ0,κ ′
0),(κ1,κ ′

1)(k, τ,L) = 1

L

∫ L

0
W

LM

(κ0,κ ′
0),(κ1,κ ′

1)
(k, τ,L)dLM.
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This establishes a correspondence between the two problems. This statement is only valid for
a fixed frequency k and for the second-order moments of the wave field, and it would require
further work to establish it in the time-domain (note that the impedance of the equivalent ran-
dom mirror is found to depend on the frequency k). It confirms the naive interpretation of the
weak backscattering regime: the wave propagates first in the forward-scattering approxima-
tion, it is reflected at some random position, and it propagates back in the forward-scattering
approximation. However, it should be stressed that correlations between the forward and
backward propagations have to be taken into account. Indeed the wave propagates in the
same medium in both ways, and an approach based on two independent propagation steps
leads to wrong predictions (in particular, reciprocity is violated and the enhanced backscat-
tering phenomenon cannot be captured).
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